K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DA,DC là tiếp tuyến của (O)

=>DA=DC

=>OD vuông góc AC

CH vuông góc AB

=>AD//CH

=>CI/AD=IM/MD

IH/AD=BI/BD

mà IM/MD=BI/BD

nên CI/AD=IH/AD

=>CI=IH

a: góc AMB=góc AEB=1/2*sđ cung AB=90 độ

Xét ΔBMS vuông tại M và ΔBED vuông tại E có

góc MBS=góc EBD

=>ΔBMS đồng dạng với ΔBED

=>góc BSM=góc BDE

=>góc MSE=góc MDE

=>MSDE nội tiếp

b: Xét ΔSME và ΔSBA có

góc S chung

góc SEM=góc SAB

=>ΔSME đồng dạng với ΔSBA

a: góc HCB+góc HEB=180 độ

=>HCBE nội tiếp

Xét ΔACH vuông tại C và ΔAEB vuông tại E có

góc CAH chung

=>ΔACH đồng dạng với ΔAEB

=>AC/AE=AH/AB

=>AC*AB=AE*AH

b: góc IDH=1/2*sđ cung DB

góc IHD=90 độ-góc AMH=1/2*sđ cung DB

=>góc IDH=góc IHD

=>ΔIHD cân tại I

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

=>BC\(\perp\)AC tại C

=>BC\(\perp\)AE tại C

=>ΔCEF vuông tại C

Xét (O) có

\(\widehat{ICB}\) là góc tạo bởi tiếp tuyến CI và dây cung CB

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

Do đó: \(\widehat{ICB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{BFD}\left(=90^0-\widehat{CBA}\right)\)

nên \(\widehat{ICB}=\widehat{BFD}\)

mà \(\widehat{BFD}=\widehat{IFC}\)(hai góc đối đỉnh)

nên \(\widehat{ICB}=\widehat{IFC}\)

=>\(\widehat{ICF}=\widehat{IFC}\)

=>IC=IF

Ta có: \(\widehat{ICF}+\widehat{ICE}=\widehat{ECF}=90^0\)

\(\widehat{IFC}+\widehat{IEC}=90^0\)(ΔECF vuông tại C)

mà \(\widehat{ICF}=\widehat{IFC}\)

nên \(\widehat{ICE}=\widehat{IEC}\)

=>IC=IE

mà IC=IF

nên IE=IF

=>I là trung điểm của EF

b: Vì ΔCEF vuông tại C

nên ΔCEF nội tiếp đường tròn đường kính EF

=>ΔCEF nội tiếp (I)

Xét (I) có

IC là bán kính

OC\(\perp\)CI tại C

Do đó: OC là tiếp tuyến của (I)