K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

(ab+bc+ca)-3abc(a+b+c)

=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab-3a2bc-3b2ac-3c2ab

=a2b2+b2c2+a2c2-a2bc-b2ac-c2ab

cần chứng minh :

a2b2+b2c2+a2c2-a2bc-b2ac-c2ab >=0

<=>2.(a2b2+b2c2+a2c2-a2bc-b2ac-c2ab) >=0

<=>(ab-ac)2+(ab-bc)2+(bc-ac)2>=0

bất đẳng thức trên luôn đúng 

=> dpcm

9 tháng 2 2020

Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)

BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)  

\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)

\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)

P/s: Ko chắc ạ..

4 tháng 10 2020

ĐK : \(x\in N\left|x\inℕ^∗\right|min=1\)

\(\frac{a^2b}{ab^2+1}+\frac{b^2c}{bc^2+1}+\frac{c^2a}{ca^2+1}\ge\frac{3abc}{1+abc}\)

\(\frac{1^2.1}{1.1^2+1}+\frac{1^2.1}{1.1^2+1}+\frac{1^2.1}{1.1^2+1}\ge\frac{3.1.1.1}{1+1.1.1}\)

\(\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\ge\frac{3}{2}\)

\(3\ne\frac{3}{2}\)(đpcm)

NV
5 tháng 5 2021

a.

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)

25 tháng 9 2018

Giả sử điều cần c/m là đúng , ta có :

\(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2a^2bc+2abc^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2\ge2a^2bc+2ab^2c+2abc^2\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(b^2c^2-2ab^2c+a^2b^2\right)+\left(a^2c^2-2abc^2+b^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ac\right)^2+\left(bc-ab\right)^2+\left(ac-bc\right)^2\ge0\)

( điều này luôn đúng )

\(\Rightarrow\) điều giả sử là đúng

\(\Rightarrow\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)

banh

17 tháng 4 2017

Theo đề bài thì: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\sum\dfrac{a}{a^2+bc}\le\sum\dfrac{a}{2a\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{bc}}\)

\(\le\dfrac{1}{2}\sum\left(\dfrac{1}{2a}+\dfrac{1}{2b}\right)=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)

18 tháng 4 2017

Mặc dù chả hiểu gì cả nhưng cảm ơn c nhé!vui

C giải bằng phương pháp của lớp 9 được ko?

28 tháng 6 2021

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

28 tháng 6 2021

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

NV
3 tháng 3 2022

Do \(a+b+c=1\) nên BĐT cần chứng minh tương đương:

\(2\left(a^3+b^3+c^3\right)+3abc\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Thật vậy, ta có:

\(2\left(a^3+b^3+c^3\right)=\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(c^3+a^3\right)\)

\(=\left(a+b\right)\left(a^2+b^2-ab\right)+\left(b+c\right)\left(b^2+c^2-bc\right)+\left(c+a\right)\left(c^2+a^2-ca\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)+\left(b+c\right)\left(2bc-bc\right)+\left(c+a\right)\left(2ca-ca\right)\)

\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

NV
28 tháng 1 2021

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 1 2021

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\)