\(\ge\)3abc(a+b+c)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

(ab+bc+ca)-3abc(a+b+c)

=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab-3a2bc-3b2ac-3c2ab

=a2b2+b2c2+a2c2-a2bc-b2ac-c2ab

cần chứng minh :

a2b2+b2c2+a2c2-a2bc-b2ac-c2ab >=0

<=>2.(a2b2+b2c2+a2c2-a2bc-b2ac-c2ab) >=0

<=>(ab-ac)2+(ab-bc)2+(bc-ac)2>=0

bất đẳng thức trên luôn đúng 

=> dpcm

25 tháng 9 2018

Giả sử điều cần c/m là đúng , ta có :

\(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2a^2bc+2abc^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2\ge2a^2bc+2ab^2c+2abc^2\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(b^2c^2-2ab^2c+a^2b^2\right)+\left(a^2c^2-2abc^2+b^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ac\right)^2+\left(bc-ab\right)^2+\left(ac-bc\right)^2\ge0\)

( điều này luôn đúng )

\(\Rightarrow\) điều giả sử là đúng

\(\Rightarrow\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)

banh

7 tháng 1 2020

lol

10 tháng 1 2020

không hiểu kiểu gì

27 tháng 1 2022

không cần đk là a,b,c là số thực cũng được @@

Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy

chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*

Áp dụng vào bài toán ta được :

2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)

<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca

Dấu = xảy ra <=>a=b=c

27 tháng 1 2022

\(a^2+b^2\ge ab+bc+ca.\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)

18 tháng 10 2020

a) Xét hiệu ta có:

\(a^2+b^2+c^2-ab-bc-ca\)

\(=\frac{1}{2}.\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\frac{1}{2}.\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)

\(=\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)

Vì \(\left(a-b\right)^2\ge0\forall a,b\)\(\left(b-c\right)^2\ge0\forall b,c\)\(\left(a-c\right)^2\ge0\forall a,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\forall a,b,c\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

18 tháng 10 2020

a,Ta có:\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(a^2+c^2\ge2ca\)

Cộng theo từng vế ba bđt trên,ta được:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

Dấu "="xảy ra khi a=b=c

b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho a+b)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)đúng với mọi a,b

Dấu"=" xảy ra khi a=b

c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)đúng với mọi a,b,c

Dấu"=" xảy ra khi a=b=c=0

26 tháng 4 2021

Cô-si đơn giản =) 

Có \(\frac{a+b}{2}\ge\sqrt{ab}\)

Nên 

\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)

\(a+c\ge2\sqrt{ac}\Leftrightarrow\left(a+c\right)^2\ge4ac\left(2\right)\)

\(c+b\ge2\sqrt{bc}\Leftrightarrow\left(b+c\right)^2\ge4bc\left(3\right)\)

Cộng (1), (2), (3) vế theo vế

\(\Rightarrow2a^2+2b^2+2c^2+2ab+2ac+2bc\ge4ab+4ac+4bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

Mà Theo đề \(a+b+c+ab+bc+ac=36\) (a=b=c=3)  \(\Leftrightarrow ab+bc+ac=27\)

\(\Rightarrow a^2+b^2+c^2\ge27\left(đpcm\right)\)

26 tháng 4 2021

Áp dụng bđt phụ \(x^2+y^2+z^2+1\ge\frac{2\left(x+y+z+xy+yz+zx\right)}{3}\)nhé =))

9 tháng 2 2020

Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)

BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)  

\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)

\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)

P/s: Ko chắc ạ..

19 tháng 5 2020

a) Ta có: \(\frac{a^2}{a+b}-\frac{b^2}{a+b}+\frac{b^2}{b+c}-\frac{c^2}{b+c}+\frac{c^2}{c+a}-\frac{a^2}{c+a}\) \(=a-b+b-c+c-a=0\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)

\(\Rightarrow2\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)\(\ge\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ca}{c+a}\)

\(\Rightarrowđpcm\)

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(a^2b^2\left(a^2+b^2\right)=\frac{1}{2}\cdot ab\cdot2ab\cdot\left(a^2+b^2\right)\le\frac{1}{2}\cdot\frac{\left(a+b\right)^2}{4}\cdot\frac{\left(2ab+a^2+b^2\right)^2}{4}=2\)

Dấu "=" \(\Leftrightarrow a=b=1\)

20 tháng 3 2018

a) \(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

20 tháng 3 2018

Câu a :

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu = xảy ra khi \(a=b\)

Câu b :

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )

Dấu = xảy ra khi \(a=b=c\)

20 tháng 5 2018

1.              Giải 

Ta chứng minh với mọi x, y luôn có : \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\) (1) 

\(\Rightarrow\left(1\right)\Leftrightarrow\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\)

\(\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)

ÁP DỤNG (1) ta được 

\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\)

\(\Leftrightarrow\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\left(đpcm\right)\)

2.  Ta biến đổi các Đẳng thức : \(a^2+b^2+c^2-\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow\left(\frac{a^2}{2}-ab+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}-bc+\frac{c^2}{2}\right)-\left(\frac{c^2}{2}-ca+\frac{a^2}{2}\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}\right)^2+\left(\frac{b}{\sqrt{2}}-\frac{c}{\sqrt{2}}\right)+\left(\frac{c}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)\ge0\left(đpcm\right)\)