Cho dãy số: 1,3,6,10,15,...
a) Tìm số hạng thứ 100 của dãy số
b) Chứng minh tổng hai số hạng liên tiếp của dãy số bao giờ cũng là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số hạng liên tiếp của dãy có dạng:
\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)
Tổng của 2 số hạng liên tiếp:
\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)
Nhận xét các số hạng trong dãy có dạng
\(\frac{n\left(n+1\right)}{2}\)
=>Tổng 2 số hạng liên tiếp của dãy là
\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương
=>đpcm
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)
=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)
Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương
Xét tổng 2 số hạng liên tiếp của dãy:
(n-1)n/2+n(n+1)/2=(n^2-n+n^2+n)/2=(2n^2)/2=n^2 là số chính phương(n thuộc N)
bạn thử chọn số khác đi như \(\frac{n\left(n+2\right)}{2}\)nó đâu có ra
Số hạng thứ n của dãy là:n(n+1)/2
Số hạng thứ n-1 của dãy là:(n-1)n/2
Ta có:(n-1)n/2+n(n+1)/2=(n^2-n)/2+(n^2+n)/2
=(2n^2)/2=n^2
Vì n thuộc N nên n^2 là số chính phương
Vậy tổng 2 số hạng liên tiếp của dãy là số chính phương.
Ta xét tổng hai số
(n-1)×n/2 + n×(n+1)/2
=> (n-1)×n+n×(n+1) /2
=>n×[(n-1)×(n+1)] /2
=>n×2n /2
=> 2×n2 /2
=> n2
bài toán được chứng minh
Số hạng thứ n là \(\frac{n\left(n+1\right)}{2}\)
Tổng 2 số liên tiếp của dãy là \(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\left(2n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\left(n+1\right).2}{2}\)
\(=\left(n+1\right)^2\)
Do đó tổng 2 số liên tiếp của dãy là số chính phương.
a) Số hạng thứ nhất : 3=3+15×0
Số hạng thứ hai : 18=3+15×1
Số hạng thứ ba : 48=3+15×1+15×2
Số hạng thứ tư : 93=3+15×1+15×2+15×3
Số hạng thứ năm : 153=3+15×1+15×2+15×3+15×4
..........
Số hạng thứ n : 3+15×1+15×2+15×3+......+15×(n-1)
Vậy số hạng thứ 100 của dãy là :
3+15×1+15×2+......+15×(100-1)
=3+15×(1+2+3+......+99)
=3+15×(1+99)×99÷2=74253
b) Vậy 11703 là số hạng thứ 40 của dãy
a
nhận xét:
+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô (ở hàng b)
VD: (*) + (^) = (&)2
nói vậy hiểu ko??
=> x+ y = 100 ^2 =10 000 (1)
+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):
a+b=c <=> a-c=b (+)
áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)
x-y = 100 (2)
Cộng 2 vế (1) và (2), ta có:
2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050
Câu b thì tớ ko biết
là số thứ 100 là 1000