(n+1)^3=(n+1)^2. Tìm n thuộc N.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lê Thị Phương Linh
Tìm n thuộc N biết
a ,n.(n+1)+1=592015
b ,1! + 2! + 3! +...n! = x2 ( x thuộc N )
a, n+1 thuộc Ư(n^2+2n-3)
=>n^2+2n-3 chia hết cho n+1
=>n^2+n+(n+1)-4 chia hết cho n+1
=>n(n+1)+(n+1)-4 chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {0;-2;1;-3;3;-5}
b, n2+2 thuộc B(n^2+1)
=>n^2+2 chia hết cho n^2+1
=>n^2+1+1 chia hết cho n^2+1
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)={1;-1}
Ta có: n^2+1 = 1 => n^2 = 0 => n =0
n^2 + 1 = -1 => n^2 = -2 (loại)
Vậy n=0
c, 2n+3 thuộc B(n+1)
=>2n+3 chia hết cho n+1
=>2n+2+1 chia hết cho n+1
=>2(n+1)+1 chia hết cho n+1
=>2 chia hết chi n+1
=>n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-2;1;-3}
a, n+1 thuộc Ư(n^2+2n-3)
=>n^2+2n-3 chia hết cho n+1
=>n^2+n+(n+1)-4 chia hết cho n+1
=>n(n+1)+(n+1)-4 chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {0;-2;1;-3;3;-5}
b, n2+2 thuộc B(n^2+1)
=>n^2+2 chia hết cho n^2+1
=>n^2+1+1 chia hết cho n^2+1
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)={1;-1}
Ta có: n^2+1 = 1 => n^2 = 0 => n =0
n^2 + 1 = -1 => n^2 = -2 (loại)
Vậy n=0
c, 2n+3 thuộc B(n+1)
=>2n+3 chia hết cho n+1
=>2n+2+1 chia hết cho n+1
=>2(n+1)+1 chia hết cho n+1
=>2 chia hết chi n+1
=>n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-2;1;-3}
:D
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
Mk hướng dẫn,bn tự giải :
Tìm n \(\in\)Z để các p/s đó \(\in\)Z
=> Cần chứng minh tử \(⋮\)mẫu
Bài 2:
\(\Leftrightarrow n^2-1+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
(n + 1)3 = (n + 1)2
(n + 1)3 - (n + 1)2 = 0
(n + 1)2.[(n + 1) - 1) = 0
(n + 1)2 . n = 0
\(\Leftrightarrow\orbr{\begin{cases}n=0\\\left(n+1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
(n+1)^3=(n+1)^2 khi và chỉ khi n+1=1
Suy ra n=0 hoặc -2
Mà N thuộc N nên n=0
Vậy n=0