Cho các số nguyên x,y,z thỏa mãn x^2+y^2=z^2 chứng minh x.y.z chia hết cho 12
Giúp mình đi ạ
Mình cảm ơn nhiều lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(60=3.4.5\)
Ta cần chứng minh xyz chia hết cho 3 ; 4 và 5
\(∗\)Giả sử cả x ; y và z đều không chia hết cho 3
Khi đó x ; y và z chia cho 3 dư 1 hoặc dư 2 => x2 ; y2 và z2 chia cho 3 dư 1
\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 3 )
Vô lí vì \(z^2\equiv1\) ( mod 3 )
Vậy tồn tại ít nhất 1 số chia hết cho 3, do đó \(xyz⋮3\) ( 1 )
\(∗\)Giả sử cả x ; y và z không chia hết cho 4
Khi đó x ; y và z chia cho 4 dư 1 ; 2 hoặc 3
- TH1 : Cả x ; y và z lẻ => x2 ; y2 và z2 chia 4 dư 1
\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại )
- TH2 : Có ít nhất 2 số chẵn => xyz chia hết cho 4
- TH3 : Có 1 số chẵn và 2 số lẻ
+) Với x ; y lẻ thì \(z^2=x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại do z chẵn nên \(z^2\equiv0\) ( mod 4 ) )
+) Với x ; z lẻ thì \(y^2=z^2-x^2\equiv\left(z-x\right)\left(z+x\right)\) .Ta có bảng sau :
z | x | z- |
4m + 1 | 4n + 1 | 4( m - n ) |
4m + 3 | 4n + 1 | 4 ( n - n ) + 2 |
Các trường hợp khác tương tự
Ta luôn có \(y^2=\left(z-x\right)\left(z+x\right)⋮8\) . Trong khi đó y2 không chia hết cho 4 nhưng lại chia hết cho 8 => Mâu thuẫn
Vậy tồn tại ít nhất 1 số chia hết cho 4 \(\Rightarrow xyz⋮4\) ( 2 )
\(∗\)Giả sử cả x ; y và z không chia hết cho 5
Khi đó x ; y và z chia cho 5 dư 1 ; 2 ; 3 hoặc 4 => x2 ; y2 và z2 chia cho 5 dư 1 hoặc -1
- TH1 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv2\) ( mod 5 ) ( loại )
- TH2 : \(x^2\equiv-1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv-1\) ( mod 5 ) ( loại )
- TH3 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv0\) ( mod 5 ) ( loại )
Vậy tồn tại ít nhất một số chia hết cho 5 \(\Rightarrow xyz⋮5\) ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow xyz⋮3.4.5=60\left(đpcm\right)\)
Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)
\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)
\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)
- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)
- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)
\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d=1\)
\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau
Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\)
Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)
\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)
\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)
Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))
Vậy \(x⋮3\)
Giả sử tồn tại x, y, z, t thỏa mãn.
Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).
Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).
Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).
Bổ đề dc cm.
Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).
Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).
Đặt x = 3x', y = 3y', z = 3z', t = 3t'.
Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).
Cmtt, ta có \(x',y',z',t'⋮3\).
Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).
Do đó x = y = z = t = 0 (vô lí).
Vậy không tồn tại...
- Ta có: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+y^2+2xy=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
- CMT2: \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2zx\)
- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P
- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)
- Đặt \(a=x^3+y^3+z^3\)
- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)
\(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)
- Mặt khác: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a
- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)
- Thay \(a=3xyz\)vào đa thức P
- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)
Vậy \(P=-\frac{3}{2}\)
60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²
* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)
* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :
........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)
* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }
Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )
Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi