Tìm tất cả các giá trị x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Điều kiện tự làm nhé
\(\Leftrightarrow x-y+z=x+y+z+2\left(\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\right)\)
\(\Leftrightarrow y+\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\)
\(\Leftrightarrow\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\z=y\end{cases}}\)
đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
<=> ..bla bla tự làm nhá !
Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có
\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương
\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)
\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)
Dấu "=" xảy ra khi Giải hệ phương trình trên ta được
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\) giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)
Thế nào nó bị lỗi nên không hiển thị
có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si
\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)