K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

c: BEDC nội tiếp

=>góc EBD=góc ECD

d: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

a: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

c: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

3 tháng 4 2016

c) Kẻ OI vuông góc với BC tại I thì OI không đổi, vì BC cố định.

Theo t/c đường kính và dây thì I là trung điểm của BC.

cm tương tự câu b) để có BD // CF, suy ra tứ giác BHCF là hình bình hành mà I là trung điểm của BC suy ra I là trung điểm của HF

Vậy OI là đường tb của tam giác AHF => AH = 2.OI không đổi

3 tháng 4 2016

mình cảm ơn nhiều nhé

a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

b: Gọi giao của AH với BC là N

=>AH vuông góc BC tại N

góc IEO=góc IEH+góc OEH

=góc IHE+góc OCE

=90 độ-góc OCE+góc OCE=90 độ

=>IE là tiếp tuyến của (O)

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có

\(\widehat{EAC}\) chung

Do đó: ΔAEC đồng dạng với ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AD\cdot AC\)

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

DO đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EAH}\)

=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)

Xét tứ giác HDCM có

\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)

=>HDCM là tứ giác nội tiếp

=>\(\widehat{HDM}=\widehat{HCM}\)

=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)

=>DB là phân giác của \(\widehat{EDM}\)