Cho dãy gồm n số: 7,77,....,777777...7 (1000 chữ số 7)
CMR: Tồn tại ít nhất 1 số chia hết cho 2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn dãy 7;77;777;7777;..;77777...77(số cuối có 15 chữ số 7)
Chắc chắn trong dãy có cùng số dư khi chia cho 13
2 số đó là : 77..7 ( a chữ số 7) và 777...7 ( b c/s 7) (1=<a<b=<15)
=>777...7-77..7 chia hết cho 13
=> 777..70...0 chia hết cho 13
=> 777..7 x 10a chia hết cho 13
Mà (13;10) => (13;10a)=1
=> 777..77 chia hết cho 13 vói b-a chữ số
Xét dãy gồm \(2014\) số hạng :
7; 77; 777 ;........; 777.......777
Lấy \(2014\) số hạng của dãy chia cho \(2013\) ta được \(2014\) số dư nhận các giá trị là :
0; 2; 3; 4; .................. ; 2012 ( 2013 giá trị)
\(\Rightarrow\) Có ít nhất 2 số dư bằng nhau
\(\Rightarrow\) Ở dãy trên có 2 số đồng dư với nhau khi chia cho 2013
\(\Rightarrow\) Hiệu 2 số đó có dạng :
\(77........777000.....000\) \(⋮\) \(2013\)
\(777.......777.10^k\) \(⋮\) \(2013\)
\(\Rightarrow77...777\) \(⋮\) \(2013\) ( do \(10^k\) và \(2013\) nguyên tố cùng nhau )
Vậy tồn tại số có dạng \(77........7777\) chia hết cho \(2013\)
\(\Rightarrowđpcm\)
Chúc bn học tốt!!
@ngonhuminh,@Nguyễn Huy Tú,@Ace Legona, và mọi người giúp em với!!
+) Chọn dãy số gồm 2014 số
1,11,111,....,111..11
(2014 cs1)
+) Theo nguyên lí Dirichlet tồn tại ít nhất 2 số có cùng số dư khi chia cho2013
Giả sử số đó là 111...11-111...11 (m>n)
(m cs1) (n cs 1)
=>111..1 - 11...1 chia hết cho 2013
=111...100..0 chia hết cho 2013
(m-n cs 1)(n cs0)
=111..1.10n
(m-n cs 1)
Mà 10n ko chia hết cho 2013
=>111..1 chia hết cho 2013 => ĐPCM (điều phải cm)
(m-n cs 1)
cho mình xin k nha
Drichle^^