cho x+y=a,x-y=b.tính xy và x3-y3 theo a,b.Giúp với nhaaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=a\left(1\right);x-y=b\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow2x=a+b\Rightarrow x=\dfrac{a+b}{2}\)
\(\Rightarrow y=a-\dfrac{a+b}{2}=\dfrac{a-b}{2}\)
\(xy=\dfrac{a+b}{2}.\dfrac{a-b}{2}=\dfrac{a^2-b^2}{4}\)
\(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)=\left(x-y\right)\left(x^2+y^2+2xy-xy\right)\)
\(=\left(x-y\right)\left(\left(x+y\right)^2-xy\right)\)
\(=\left(\dfrac{a+b}{2}-\dfrac{a-b}{2}\right)\left(\left(\dfrac{a+b}{2}+\dfrac{a-b}{2}\right)^2-\dfrac{a+b}{2}.\dfrac{a-b}{2}\right)\)
\(=\left(\dfrac{a+b-a+b}{2}\right)\left(\left(\dfrac{a+b+a-b}{2}\right)^2-\dfrac{a^2-b^2}{4}\right)\)
\(=b\left(a^2-\dfrac{a^2-b^2}{4}\right)=b\left(\dfrac{3a^2+b^2}{4}\right)=\left(\dfrac{3a^2b+b^3}{4}\right)\)
Để tìm giá trị của xy và x^3 - y^3 theo a và b, ta giải hệ phương trình: x + y = a (1) x - y = b (2) Cộng hai phương trình (1) và (2) ta có: 2x = a + b x = (a + b)/2 Thay giá trị của x vào phương trình (1) ta có: (a + b)/2 + y = a y = a - (a + b)/2 y = (a - b)/2 Từ đó, ta có: xy = [(a + b)/2][(a - b)/2] xy = (a^2 - b^2)/4 x^3 - y^3 = [(a + b)/2]^3 - [(a - b)/2]^3 x^3 - y^3 = [(a + b)^3 - (a - b)^3]/8 Vậy, giá trị của xy là (a^2 - b^2)/4 và giá trị của x^3 - y^3 là [(a + b)^3 - (a - b)^3]/8.
\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)
\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)
\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)
\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=24^3-3\cdot24\cdot18\)
\(=13824-1296\)
=12528
Lời giải:
a.
$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=[9^2-2.18]^2-2.18^2=1377$
Nếu $x\geq y$ thì:
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$
$=\sqrt{9^2-4.18}(9^2-18)=189$
Nếu $x< y$ thì $x^3-y^3=-189$
b.
$A=(x+y)^2-6(x+y)+y-5$
$=(-9)^2-6(-9)+y-5=130+y$
Chưa đủ cơ sở để tính biểu thức.
\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)
\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)
\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
Ta có:
VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)
\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)
\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)
\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)
\(=x^3+y^3=VP\left(dpcm\right)\)
`x^3+y^3`
`=(x+y)(x^2-xy+y^2)`
`=3[(x+y)^2-3xy]`
`=3(3^2-2.3)`
`=3(9-6)=3.3=9`
\(x+y=a\left(1\right)\)
\(x-y=b\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow2x=a+b\Rightarrow x=\dfrac{a+b}{2}\)
\(\left(1\right)\Rightarrow y=a-x\Rightarrow y=a-\dfrac{a+b}{2}\Rightarrow y=\dfrac{a-b}{2}\)
\(xy=\dfrac{\left(a+b\right)}{2}.\dfrac{\left(a-b\right)}{2}=\dfrac{a^2-b^2}{4}\)
\(x^3-y^3=\left(\dfrac{a+b}{2}\right)^3-\left(\dfrac{a-b}{2}\right)^3=\dfrac{\left(a+b\right)^3}{8}-\dfrac{\left(a-b\right)^3}{8}\)
\(=\dfrac{\left(a+b\right)^3-\left(a-b\right)^3}{8}\)
\(=\dfrac{\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]}{8}\)
\(=\dfrac{2b\left[a^2+b^2+2ab+a^2-b^2+a^2+b^2-2ab\right]}{8}\)
\(=\dfrac{b\left[3a^2+b^2+2ab\right]}{4}\)
\(\left\{{}\begin{matrix}x+y=a\\x-y=b\end{matrix}\right.\) tính \(x^3\) - y3 theo \(a\) và \(b\)
⇒ \(\left\{{}\begin{matrix}x+y+x-y=a+b\\x-y=b\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=a+b\\y=x-b\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\left(a+b\right):2\\y=\left(a-b\right):2\end{matrix}\right.\) ⇒ \(xy\) = \(\dfrac{a+b}{2}\)\(\times\)\(\dfrac{a-b}{2}\) = \(\dfrac{a^2-b^2}{4}\)
\(x^{3^{ }}\) - y3 = (\(x\) - y)(\(x^2\) + \(x\)y + y2) = \(\left(x-y\right)\)\(\left(\left[x+y\right]^2-xy\right)\) (1)
Thay \(x-y\) = a; \(x\) + y = b và \(xy\) = \(\dfrac{a^2-b^2}{4}\) vào (1) ta có:
\(x^3\) - y3 = b.(a2 - \(\dfrac{a^2-b^2}{4}\)) = b.\(\dfrac{3a^2+b^2}{4}\) = \(\dfrac{3a^2b+b^3}{4}\)