Tứ giác ABCD có AC vuông góc BD tại H và HB=HD.EF là trung điểm AB,BC qua E kẻ đường Vuông góc CD cắt BD tại I chứng minh
a) I là trực tâm của tam giác HEF
b) FI vuông góc AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của ∆ABD => MN // BD
Mà AC⊥BD nên MN⊥AC hay LA⊥MN (1)
N, L lần lượt là trung điểm của AD, AC nên NL là đường trung bình của ∆ADC => NL // DC
Mà MH⊥DC nên NL⊥MH (2)
Từ (1) và (2) suy ra H là trực tâm của tam giác MNL (đpcm)
a: Xét ΔDBC có BH/BD=BF/BC
=>HF//DC
=>EI vuông góc HF(1)
Xét ΔBAC có BE/BA=BF/BC
nên EF//AC
=>EF vuông góc HI(2)
Từ (1), (2) suy ra I là trực tâm của ΔHEF
b: I là trực tâm của ΔHEF
=>FI vuông góc EH
Xét ΔBAD có BE/BA=BH/BD
nên EH//AD
=>FI vuông góc AD