cho mình hỏi tìm giá trị x ,y thoả mãn 1/x -1/y =1/7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
(x-2)(y+1)=7
=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}
Ta có bảng:
x-2 | -1 | -7 | 1 | 7 |
y+1 | -7 | -1 | 7 | 1 |
x | 1 | -5 | 3 | 9 |
y | -8 | -2 | 6 | 0 |
Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)
b)
3x+8 chia hết cho x-1
<=> 3x-3+11 chia hết cho x-1
<=> 3(x-1)+11 chia hết cho x-1
<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1
=> x-1 \(\in\)Ư(11)={-1,-11,1,11}
<=>x\(\in\){0,-10,2,12}
Điều kiện của $x,y$ là gì? Bạn cần bổ sung thêm mới tính toán được
Theo bđt cauchy schwarz dang engel
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}=\dfrac{4}{10}=\dfrac{2}{5}\)
Dấu ''='' xảy ra khi \(x=y=5\)
Vậy ...
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Tìm GTLN:
Xét hiệu $2.(x^2+y^2)-(x+y)^2=2.(x^2+y^2)-x^2-y^2-2xy=x^2-2xy+y^2=(x-y)^2 \geq 0$
Nên $(x+y)^2 \leq 2.(x^2+y^2)=2$ (do $x^2+y^2=1$)
Dấu $=$ xảy ra $⇔(x-y)^2=0;x^2+y^2=1⇔x=y;x^2+y^2=1⇔x=y=\dfrac{1}{\sqrt[]2}$
Tìm Min:
Có $(x+y)^2 \geq 0$ với mọi $x;y$
Dấu $=$ xảy ra $⇔(x+y)^2=0;x^2+y^2=0⇔x=-y;x^2+y^2=1⇔x=\dfrac{1}{\sqrt[]2};y=-\dfrac{1}{\sqrt[]2}$ và hoán vị
Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)
\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)
\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)
\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)
Thế vào P ta được
\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)
\(=x^4+2x^2-6x+2014\)
\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)
Vậy GTNN là P = 2010 đạt được khi x = 1, y = 3
Ta có: √x+1+√y−1≤√2(x+y)
⇔√2(x−y)2+10x−6y+8≤√2(x+y)
⇔2(x−y)+10x−6y+8≤2(x+y)
⇔2(x−y)2+8(x−y)+8≤0
⇔2(x−y+2)2≤0
Dấu = xảy ra khi {
x+1=y−1 |
x−y+2=0 |
⇔y=x+2
Thế vào P ta được
P=x4+(x+2)2−5x−5(x+2)+2020
=x4+2x2−6x+2014
=(x2−1)2+3(x−1)2+2010≥2010
Vậy GTNN là P = 2010 đạt được khi x = 1, y = 3
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Có phải là tìm \(x\); y nguyên không em?