K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

Ta có:

\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)

\(\Rightarrow B\)

 

Chọn B

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: A

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 3\). Do đó dãy số (un) là một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{3}\) và công bội q = 3 nên ta có số hạng tổng quát là: \({u_n} = \frac{1}{3}{.3^{n - 1}} = {3^{n - 2}}\) với n ∈ ℕ*.

Do đó số hạng thứ năm của dãy số (un) là: \({u_5} = {3^{5 - 2}} = 27\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_n} = 3n - 2\)

\( \Rightarrow {u_1} = 3.1 - 2 = 1\)

\( \Rightarrow {u_2} = 3.2 - 2 = 4\)

\( \Rightarrow {u_3} = 3.3 - 2 = 7\)

\( \Rightarrow {u_4} = 3.4 - 2 = 10\)

\( \Rightarrow {u_5} = 3.5 - 2 = 13\)

\( \Rightarrow {u_{100}} = 3.100 - 2 = 298\)

b) \({u_n} = {3.2^n}\)

\( \Rightarrow {u_1} = {3.2^1} = 6\)

\( \Rightarrow {u_2} = {3.2^2} = 12\)

\( \Rightarrow {u_3} = {3.2^3} = 24\)

\( \Rightarrow {u_4} = {3.2^4} = 48\)

\( \Rightarrow {u_5} = {3.2^5} = 96\)

\( \Rightarrow {u_{100}} = {3.2^{100}}\)

c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)

\( \Rightarrow {u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\)

\( \Rightarrow {u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\)

\( \Rightarrow {u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\)

\( \Rightarrow {u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\)

\( \Rightarrow {u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\)

\( \Rightarrow {u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).

Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).

Chọn đáp án D.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)a + 2}}{{\left( {n + 1} \right) + 1}} = \frac{{na + a + 2}}{{n + 1 + 1}} = \frac{{na + a + 2}}{{n + 2}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{na + a + 2}}{{n + 2}} - \frac{{na + 2}}{{n + 1}} = \frac{{\left( {na + a + 2} \right)\left( {n + 1} \right) - \left( {na + 2} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {{n^2}a + na + 2n + na + a + 2} \right) - \left( {{n^2}a + 2n + 2na + 4} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2}a + na + 2n + na + a + 2 - {n^2}a - 2n - 2na - 4}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\end{array}\)

a) Để \(\left( {{u_n}} \right)\) là dãy số tăng thì:

\({u_{n + 1}} - {u_n} > 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0 \Leftrightarrow a - 2 > 0 \Leftrightarrow a > 2\)

b) Để \(\left( {{u_n}} \right)\) là dãy số giảm thì:

\({u_{n + 1}} - {u_n} < 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} < 0 \Leftrightarrow a - 2 < 0 \Leftrightarrow a < 2\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}{u_1} = \frac{1}{{1.2}} = \frac{1}{2}\\{u_2} = \frac{1}{{1.2}} + \frac{1}{{2.3}} = \frac{2}{3}\\{u_3} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} = \frac{3}{4}\\{u_n} = \frac{n}{{n + 1}}\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(n = 100 \Leftrightarrow \left| {{u_{100}}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^{100}}}}{{100}}} \right| = \frac{1}{{100}} = 0,01\)

\(n = 1000 \Leftrightarrow \left| {{u_{1000}}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^{1000}}}}{{1000}}} \right| = \frac{1}{{1000}} = 0,001\)

Như vậy ta có thể điền vào bảng như sau:

b) \(\left| {{u_n}} \right| < 0,01 \Leftrightarrow \left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| < 0,01 \Leftrightarrow \frac{1}{n} < 0,01 \Leftrightarrow n > 100\)

Vậy \(\left| {{u_n}} \right| < 0,01\) khi \(n > 100\).

\(\left| {{u_n}} \right| < 0,001 \Leftrightarrow \left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| < 0,001 \Leftrightarrow \frac{1}{n} < 0,001 \Leftrightarrow n > 1000\)

Vậy \(\left| {{u_n}} \right| < 0,001\) khi \(n > 1000\).

c) Dựa vào trục số ta thấy, khoảng cách từ điểm \({u_n}\) đến điểm 0 trở nên rất bé khi \(n\) trở nên rất lớn.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\left. \begin{array}{l}1 > 0\\n > 0\end{array} \right\} \Leftrightarrow \frac{1}{n} > 0 \Leftrightarrow {u_n} > 0\)

\(n \ge 1 \Leftrightarrow {u_n} = \frac{1}{n} \le \frac{1}{1} \Leftrightarrow {u_n} \le 1\)