Giả sử x+y+z=2017 và 1/x+y +1/y+z +1/x+z= 1/672
Tính tổng C = x/y+z + y/z+x + z/x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\) = \(\frac{2017}{672}\)
\(\Leftrightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\)\(\frac{2017}{672}\)
\(\Leftrightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{z}{z+x}\)= \(\frac{2017}{672}\)
\(\Rightarrow A=\frac{2017}{672}-3\)
Theo đề bài ta có:
\(\left(x+y+z\right)\cdot\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=2017\cdot\dfrac{1}{672}\)
\(\Rightarrow\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow C=\dfrac{2017}{672}-3=\dfrac{1}{672}\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
Đặt : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=M\)
\(\Rightarrow\left(x+y+z\right).M=\frac{1}{672}.2017\)
\(\Rightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=\frac{2016}{672}+\frac{1}{672}\)
\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=3+\frac{1}{672}\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{1}{672}\)
Nhân cả 2 vế với \(x+y+z\),ta được:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{672}\cdot2017\)
\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\frac{2017}{672}\)
\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{2017}{672}\)
\(\Rightarrow C=\frac{1}{672}\)
Lời giải:
\(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(A+3=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{x+y}+1\right)\)
\(A+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)
\(A+3=2017\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(A+3=2017.\frac{1}{672}=\frac{2017}{672}\)
\(\Rightarrow A=\frac{2017}{672}-3=\frac{1}{672}\)
Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)
= x/y+z + y/x+z + z/x+y + 1 + 1 + 1
= x/y+z + y/x+z + z/x+y + 3
=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286
Tk mk nha
Ta có :(x+y+z)(1/x+y + 1/y+z + 1/x+z) =20172
=>x/x+y +y/x+y +z/x+y + x/y+z + y/y+z + z/y+z +x/x+z + y/x+z + z/x+z=20172
=>(x/x+y + y/x+y)+(y/y+z + z/y+z)+(x/x+z + z/x+z)+(x/y+z + y/x+z + z/x+y) =4068289
=>1+1+1+A=4068289
=>A=4068286
y x 8,01 - y : 100 = 38
y x 8,01 - y x 0,01 = 38
y x ( 8,01 - 0,01 ) = 38
y x 8 = 38
y = 38 : 8
mk chắc chắn
p/s tham khảo nhé ^_^
\(\left(x+y+z\right).\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{2017}{672}\)
\(\Rightarrow\left(\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}\right)=\dfrac{2017}{672}\)
\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{x+z}=\dfrac{2017}{672}\)
\(\Rightarrow3+\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{2017}{672}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{2017}{672}-3=\dfrac{2017}{672}-\dfrac{2016}{672}=\dfrac{1}{672}\)
\(\Rightarrow C=\dfrac{1}{672}\)