K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)

\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)

2 tháng 7 2018

A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º

a) sin A = sin (180º – A) = sin (B + C)

b) cos A = – cos (180º – A) = –cos (B + C)

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

Các hệ thức lượng giác trong tam giác và giải tam giác

NV
23 tháng 4 2019

\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)

\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)

\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)

\(=cosC.sinC+sinC.cosA.cosB\)

\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)

\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)

\(=sinA.sinB.sinC\)

26 tháng 4 2018

Bạn ghi sai đề r. Tam giác bình thường (không vuông) làm gì có sin, cos với lại phải ghi nếu vuông thì vuông tại đâu nha

27 tháng 4 2018

Bạn kẻ 3 đường trung trực ứng với 3 cạnh BC, AC và AB, gọi giao điểm của 3 đường trung trực này là O => O là tâm đường tròn ngoại tiếp tam giác ABC (định nghĩa) => OA = OB = OC = R

Các đường trung trực của các cạnh lần lượt cắt BC,AC và AB lần lượt tại các điểm A1, B1 và C1.

Hạ đường cao BH của tam giác ABC

Dễ dàng chứng minh được : tam giác ABH đồng dạng tam giác OCA1 (góc-góc) {\(\widehat{AHB}=\widehat{CA1O}=90^o\)và \(\widehat{BAH}=\widehat{A1OC}=\frac{1}{2}SĐ\widebat{BC}\)

2 tam giác này đồng dạng => AH/OA1 = AB/OC <=> AH/AB = OA1/OC <=> cos A = OA1/R (hệ thức lượng trong tam giác vuông ABH vuông tại H thì cos A = AH/AB) => OA1 = R. cos A 

CMTT : cos B= OB1/R và cos C = OC1/R 

Đặt BC = a, AC = b và AB = c

Kéo dài CO cắt đường tròn (O) tại M => CM là đường kính của đt (O) => CM = 2R

Ta có \(\widehat{CAM}=90^O\)(góc nội tiếp chắn nửa đt) => tam giác ACM vuông tại A => sin \(\widehat{AMC}=\frac{AC}{MC}=\frac{b}{2R}\)

Ta có : \(\widehat{AMC}=\widehat{B}\)(cùng chắn \(\widebat{AC}\)) => sin B = \(\frac{b}{2R}\)

CMTT : sin A = \(\frac{a}{2R}\)và sin C = \(\frac{c}{2R}\)

=> sin A + sin B + sin C = \(\frac{a+b+c}{2R}\)=> a +b +c = 2R (sin A + sin B + sin C)

Trong 1 tam giác bất kỳ tổng của 2 cạnh luôn lớn hơn cạnh thư 3 (cái này ai cũng biết rồi :))))

Với tam giác OA1B1 thì OA1+OB1 > A1B1 = AB/2 (Vì A1, B1 lần lượt là trung điểm của BC và AC => A1B1 là đường trung bình của tam giác ABC nên A1B1 =AB/2) (1)

tương tự OA1+ OC1> A1C1 = AC/2 (2)

OB1 + OC1 > B1C1 = BC/2 (3)

cộng từng vế với vế của (1), (2) và (3) => a + b +c < 4 (OA1 + OB1 + OC1) (4)

Thay a+b+c = 2R (sin A + sin B + sin C) và OA1 = R.cos A, OB1= R.cos B, OC1=R.cos C vào (4) ta được:

sin A + sin B + sin C < 2(cos A + cos B + cos C) => ĐPCM.

Note: Bạn ghi nhầm đề rồi phải nhân thêm 2 vào vế cos thì mới đúng nhé. Còn cách CM như mình làm ạ.

15 tháng 10 2019

Ta có:

Vì:

Suy ra, tam giác ABC vuông tại A

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alphasin5α2sinα(cos4α+cos2α)=sin5α2sinα.cos4α2sinα.cos2α

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)=sin5α(sin5αsin3α)(sin3αsinα)

=\sin \alpha .=sinα.

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alphasin5α2sinα(cos4α+cos2α)=sinα

30 tháng 3 2017

Trong một tam giác thì tổng các góc là 1800 :

+ + = 1800 => = -1800 - ( + )

và ( + ) là 2 góc bù nhau, do đó:

a) sinA = sin[1800 - ( + )] = sin (B + C)

b) cosA = cos[1800 - ( + )] = -cos (B + C)