\(Q=\frac{1+\text{ax}}{1-\text{ax}}.\sqrt{\frac{1-bx}{1+bx}};x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\)
và 0<a<b<2a. Rút gọn Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{1+\text{ax}}{1-\text{ax}}\sqrt{\frac{1-bx}{1+bx}}\)
Ta có: \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow\text{ax}=\sqrt{\frac{2a-b}{b}}\Rightarrow1+\text{ax}=1+\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}}\)
\(1-\text{ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)
\(\Rightarrow\frac{1+\text{ax}}{1-\text{ax}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}-\sqrt{2a-b}}=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2b-2a}\left(1\right)\)
\(bx=\frac{b}{a}\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}\left(2a-b\right)}{a}\Rightarrow\hept{\begin{cases}1-bx=\frac{a-\sqrt{b\left(2a-b\right)}}{a}\\1+bx=\frac{a+\sqrt{b\left(2a-b\right)}}{a}\end{cases}}\)
\(\Rightarrow\frac{1-bx}{1+bx}=\frac{a-\sqrt{b\left(2a-b\right)}}{a+\sqrt{b\left(2a-b\right)}}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{a^2-2ab+b^2}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{\left(a-b\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow Q=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2\left(b-a\right)}.\frac{a-\sqrt{b\left(2a-b\right)}}{a-b}=\frac{\text{[}2a+2\sqrt{b\left(2a-b\right)}\text{]}\left(a-b\sqrt{2a-b}\right)}{2\left(a-b\right)^2}\)
\(\Rightarrow\frac{2\left[a^2-b\left(2a-b\right)\right]}{2\left(a-b\right)^2}=\frac{2\left(a^2-2ab+b^2\right)}{a\left(a-b\right)^2}=1\)
\(A=\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\)
\(=\frac{a\left(a+b\right)+x\left(a+b\right)}{a\left(a-b\right)+x\left(a-b\right)}\)
\(=\frac{\left(a+b\right)\left(a+x\right)}{\left(a-b\right)\left(a+x\right)}\)
\(=\frac{a+b}{a-b}\)
Thay \(a=5;b=2\) vào A ta có:
\(A=\frac{5+2}{5-2}=\frac{7}{3}\)
Vậy tại \(a=5;b=2\) thì A=7/3
\(\frac{\sqrt{ax+1}\left(\sqrt[3]{bx+1}-1\right)+\sqrt{ax+1}-1}{x}=\frac{\frac{bx\sqrt{ax+1}}{\sqrt[3]{\left(bx+1\right)^2}+\sqrt[3]{bx+1}+1}+\frac{ax}{\sqrt{ax+1}+1}}{x}=\frac{b\sqrt{ax+1}}{\sqrt[3]{\left(bx+1\right)^2}+\sqrt[3]{bx+1}+1}+\frac{a}{\sqrt{ax+1}+1}\)
\(\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=a+b\Rightarrow a+b=1\)
\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Mình sử dụng L'Hopital nhé, 2 loại căn thế này tìm liên hợp kép dài lắm :D
\(\lim\limits_{x\rightarrow1}\frac{\left(6x-5\right)^{\frac{1}{3}}-\left(4x-3\right)^{\frac{1}{2}}}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{2\left(6x-5\right)^{-\frac{2}{3}}-2\left(4x-3\right)^{-\frac{1}{2}}}{2\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{-4\left(6x-5\right)^{-\frac{5}{3}}+2\left(4x-3\right)^{-\frac{3}{2}}}{1}=-2\)
Nếu ko bạn tách liên hợp như vầy:
\(\frac{\left(\sqrt[3]{6x-5}-2x+1\right)+\left(2x-1-\sqrt{4x-3}\right)}{\left(x-1\right)^2}\)
Sẽ khử được \(\left(x-1\right)^2\)
\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)
Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)
Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)
Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)
Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)
\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)
Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)
\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)
Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)
Câu 2: Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b\end{cases}}\)Bất Đẳng Thức cần chứng minh có dạng
\(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}\)Hay \(\frac{x_1}{1+x_2}+1+\frac{x_2}{1+x_1}+1\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}+2\)
\(\left(x_1+x_2+1\right)\left(\frac{1}{1+x_1}+\frac{1}{1+x_2}\right)\ge\frac{2\left(1+2\sqrt{x_1x_2}\right)}{1+\sqrt{x_1x_2}}\)Theo Bất Đẳng Thức Cosi ta có
\(x_1+x_2+1\ge2\sqrt{x_1x_2}+1\)Để chứng minh (*) ta quy về chứng minh
\(\frac{1}{1+x_1}+\frac{1}{1+x_2}\ge\frac{2}{1+\sqrt{x_1x_2}}\)với \(x_1;x_2>1\). Quy đồng rồi rút gọn Bất Đẳng Thức trên tương đương với
\(\left(\sqrt{x_1x_2}-1\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)^2\ge0\)(Điều này hiển nhiên đúng)
Dấu "=" xảy ra khi và chỉ khi \(x_1=x_2\Leftrightarrow a^2=4b\)