\(\frac{a^2+\text{ã}+ab+bx}{a^2+\text{ax...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

\(A=\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\)

\(=\frac{a\left(a+b\right)+x\left(a+b\right)}{a\left(a-b\right)+x\left(a-b\right)}\)

\(=\frac{\left(a+b\right)\left(a+x\right)}{\left(a-b\right)\left(a+x\right)}\)

\(=\frac{a+b}{a-b}\)

Thay \(a=5;b=2\) vào A ta có:

\(A=\frac{5+2}{5-2}=\frac{7}{3}\)

Vậy tại \(a=5;b=2\) thì A=7/3

29 tháng 11 2016

1, b) \(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\) = \(\frac{\left(x^2+2xy+y^2\right)-4}{\left(x^2+4x+4\right)-y^2}\) =\(\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)= \(\frac{\left(x+y+2\right)\left(x+y-2\right)}{\left(x+2+y\right)\left(x+2-y\right)}\) = \(\frac{x+y-2}{x+2-y}\)

2, A= \(\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\) = \(\frac{\left(a^2+ax\right)+\left(ab+bx\right)}{\left(a^2+ax\right)-\left(ab+bx\right)}\) = \(\frac{a\left(a+x\right)+b\left(a+x\right)}{a\left(a+x\right)-b\left(a+x\right)}\)= \(\frac{\left(a+x\right)\left(a+b\right)}{\left(a+x\right)\left(a-b\right)}\)= \(\frac{a+b}{a-b}\)

30 tháng 11 2016

THANKS BN

12 tháng 5 2019

\(A=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left[x-2+\frac{10-x^2}{x+2}\right]\) ĐKXĐ : \(x\ne0;x\ne\pm2\)

\(A=\left[\frac{x^2}{x\left(x+2\right)\left(x-2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\left[\frac{3x^2}{3x\left(x+2\right)\left(x-2\right)}-\frac{6x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}+\frac{3x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}\right]:\frac{6}{x+2}\)

\(A=\left[\frac{3x^2-6x^2-12x+3x^2+6x}{3x\left(x+2\right)\left(x-2\right)}\right].\frac{x+2}{6}\)

\(A=\frac{-x}{3x\left(x-2\right)}\)

\(A=\frac{-1}{3x-6}\)

26 tháng 12 2020

\(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

a) ĐKXĐ : x ≠ -3 , x ≠ 2

\(=\frac{x+2}{x+3}-\frac{5}{x^2-2x+3x-6}-\frac{1}{x-2}\)

\(=\frac{x+2}{x+3}-\frac{5}{x\left(x-2\right)+3\left(x-2\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) Để M = 1/3

=> \(\frac{x-4}{x-2}=\frac{1}{3}\)( x ≠ -3 , x ≠ 2 )

=> 3( x - 4 ) = x - 2

=> 3x - 12 - x + 2 = 0

=> 2x - 10 = 0

=> 2x = 10

=> x = 5 ( tm )

Vậy x = 5 thì M = 1/3

26 tháng 12 2020

đk: \(x\ne2,x\ne-3\)

a) Ta có: \(M=\frac{-4+x^2}{x^2+x-6}-\frac{5}{x^2+x-6}-\frac{x+3}{x^2+x-6}\)

\(=\frac{x^2-x-12}{x^2+x-6}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

b) \(M=\frac{1}{3}\Rightarrow\frac{x-4}{x-2}=\frac{1}{3}\Leftrightarrow3x-12=x-2\Leftrightarrow x=5\)

10 tháng 12 2019

1111111

10 tháng 12 2019

\(\text{a) ĐKXĐ: }a\ne1\)
\(\text{b) }M=\frac{a^2+1+a}{a^2+1}:\left[\frac{1}{a-1}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right]\)
\(M=\frac{a^2+a+1}{a^2+1}:\left[\frac{1}{a-1}-\frac{2a}{\left(a-1\right)\left(a^2+1\right)}\right]\)
\(M=\frac{a^2+a+1}{a^2+1}:\frac{a^2+1-2a}{\left(a-1\right)\left(a^2+1\right)}\)
\(M=\frac{a^2+a+1}{a^2+1}.\frac{\left(a-1\right)\left(a^2+1\right)}{\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)