K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

Tính

C. \(\left(6^{2023}-6^{2023}\right):6^{2021}\)

\(=6^{2023}:6^{2021}-6^{2023}:6^{2021}\)

\(=6^2-6^2\)

\(=36-36\)

\(=0\)

16 tháng 7 2023

C = (62023 - 62023): 62021

C = 0: 62021

C = 0

31 tháng 10 2023

\(A=7^{2024}-7^{2023}+7^{2022}-7^{2021}+...+7^2-7\)

=>\(7A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2\)

=>\(7A+A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2+7^{2024}-7^{2023}+...+7^2-7\)

=>\(8A=7^{2025}-7\)

=>\(A=\dfrac{7^{2025}-7}{8}\)

16 tháng 10 2023

`x` đâu ạ?

29 tháng 10 2023

Ta có:

\(2023^{2022}=2023\cdot2023^{2021}\)

\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)

Mà: \(2023>2022\)

\(\Rightarrow2023^{2021}>2022^{2021}\)

\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)

\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\) 

Vậy: ... 

7 tháng 1 2023

\(4A-3^{2023}\) hay \(4A=3^{2023}\) hả bạn

7 tháng 1 2023

\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)

\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)

\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)

\(2A=3^{2023}-1\)

\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)

\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)

17 tháng 7 2023

Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)

\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)

\(\Rightarrow A=2^{2023}-1\)

Ta thấy: \(2^{2023}-1=2^{2023}-1\)

Vậy: \(A=B\)

19 tháng 2 2022

giúp vơi

 

 

19 tháng 2 2022

noooooooooooooooooooooooooooooooooooooooooooooooooo

A=5(1+5^2)+5^5(1+5^2)+...+5^2021(1+5^2)

=26(5+5^5+...+5^2021) chia hết cho 26

24 tháng 10 2023

loading...  loading...  loading...  loading...  

24 tháng 10 2023

`(2^x+1)^2 =25`

`=> (2^x+1)^2 = (+-5)^2`

\(\Rightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)

\(\left(x+6\right)\left(5^x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+6=0\\5^x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\5^x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

\(\left(x-3\right)^{2023}=x-3\)

\(\Rightarrow\left(x-3\right)^{2023}-\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^{2022}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)