K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Lời giải:

a) Thay $a+b=-c$ ta có:

\(a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-a^2b^2(a+b)-b^2c^2(b+c)-c^2a^2(c+a)\)

\(=(a^2+b^2+c^2)[(a+b)^3-3ab(a+b)+c^3]+a^2b^2c+b^2c^2a+c^2a^2b\)

\(=(a^2+b^2+c^2)(-c^3+3abc+c^3]+abc(ab+bc+ac)\)

\(=abc(3a^2+3b^2+3c^2+ab+bc+ac)\)

\(=abc.\left(\frac{5}{2}(a^2+b^2+c^2)+\frac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right)\)

\(=abc[\frac{5}{2}(a^2+b^2+c^2)+\frac{(a+b+c)^2}{2}]=\frac{5abc(a^2+b^2+c^2)}{2}\) (đpcm)

b) Áp dụng kết quả $a^3+b^3+c^3=3abc$ đã làm ở phần a và điều kiện đề bài $a+b+c=0$ ta có:

\(a^7+b^7+c^7=(a^4+b^4+c^4)(a^3+b^3+c^3)-a^3b^3(a+b)-b^3c^3(b+c)-c^3a^3(c+a)\)

\(=3abc(a^4+b^4+c^4)+a^3b^3c+b^3c^3a+c^3a^3b\)

\(=abc(3a^4+3b^4+3c^4+a^2b^2+b^2c^2+c^2a^2)(1)\)

Mà:
\(a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2a^2b^2-2b^2c^2-2c^2a^2=2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c)\)

\(=2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow \frac{a^4+b^4+c^4}{2}=a^2b^2+b^2c^2+c^2a^2(2)\)

Từ $(1);(2)\Rightarrow a^7+b^7+c^7=abc(3a^4+3b^4+3c^4+\frac{a^4+b^4+c^4}{2})=\frac{7abc(a^4+b^4+c^4)}{2}$ (đpcm)

cảm ơn bạn rất nhiều

 

6 tháng 10 2018

Câu 2;3;4 dễ quá... bỏ qua!!

Câu 5;6 khó quá ... khỏi làm!!

dễ quá bỏ qua!!, khó quá khỏi làm!!

cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.

28 tháng 4 2019

Hmm , bài này trông quen quen , trong cuốn "các bài giảng về bđt Cô-si" của Phạm Văn Hùng ; Nguyễn Vũ Lương , Nguyễn Ngọc Thắng thì phải . Mình đọc rồi mà quên mất tiêu =( Để nghĩ lại coi nha

28 tháng 4 2019

Bạn ơi , mình không có quyển đó,  bạn cố nhớ lại giúp mình với , huhu , thứ 6 là mình phải nộp rồi

20 tháng 11 2018

Ta có: \(a^2+3=\left(a+b\right)\left(a+c\right)\)

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{a}{a^2+7}+\dfrac{b}{b^2+7}+\dfrac{c}{c^2+7}\le\sum\dfrac{a}{4\sqrt{a^2+3}}=\sum\dfrac{a}{4\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\sum\dfrac{a}{4}.\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\sum\dfrac{1}{8}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=\dfrac{3}{8}\)

Dấu = xảy ra khi a=b=c=1

P/s:\(\sum\limits_{x,y,z}x=x+y+z\) :Tổng hoán vị

20 tháng 11 2018

Akai Haruma giúp em với !!!