cho a+b+c=0 cmr 4(a^7 + b^7 + c^7 ) = 7abc(a^2 + b^2 + c^2 ) ^2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Thay $a+b=-c$ ta có:
\(a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-a^2b^2(a+b)-b^2c^2(b+c)-c^2a^2(c+a)\)
\(=(a^2+b^2+c^2)[(a+b)^3-3ab(a+b)+c^3]+a^2b^2c+b^2c^2a+c^2a^2b\)
\(=(a^2+b^2+c^2)(-c^3+3abc+c^3]+abc(ab+bc+ac)\)
\(=abc(3a^2+3b^2+3c^2+ab+bc+ac)\)
\(=abc.\left(\frac{5}{2}(a^2+b^2+c^2)+\frac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right)\)
\(=abc[\frac{5}{2}(a^2+b^2+c^2)+\frac{(a+b+c)^2}{2}]=\frac{5abc(a^2+b^2+c^2)}{2}\) (đpcm)
b) Áp dụng kết quả $a^3+b^3+c^3=3abc$ đã làm ở phần a và điều kiện đề bài $a+b+c=0$ ta có:
\(a^7+b^7+c^7=(a^4+b^4+c^4)(a^3+b^3+c^3)-a^3b^3(a+b)-b^3c^3(b+c)-c^3a^3(c+a)\)
\(=3abc(a^4+b^4+c^4)+a^3b^3c+b^3c^3a+c^3a^3b\)
\(=abc(3a^4+3b^4+3c^4+a^2b^2+b^2c^2+c^2a^2)(1)\)
Mà:
\(a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=4(ab+bc+ac)^2-2a^2b^2-2b^2c^2-2c^2a^2=2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c)\)
\(=2(a^2b^2+b^2c^2+c^2a^2)\)
\(\Rightarrow \frac{a^4+b^4+c^4}{2}=a^2b^2+b^2c^2+c^2a^2(2)\)
Từ $(1);(2)\Rightarrow a^7+b^7+c^7=abc(3a^4+3b^4+3c^4+\frac{a^4+b^4+c^4}{2})=\frac{7abc(a^4+b^4+c^4)}{2}$ (đpcm)
Câu 2;3;4 dễ quá... bỏ qua!!
Câu 5;6 khó quá ... khỏi làm!!
dễ quá bỏ qua!!, khó quá khỏi làm!!
cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.
Hmm , bài này trông quen quen , trong cuốn "các bài giảng về bđt Cô-si" của Phạm Văn Hùng ; Nguyễn Vũ Lương , Nguyễn Ngọc Thắng thì phải . Mình đọc rồi mà quên mất tiêu =( Để nghĩ lại coi nha
Bạn ơi , mình không có quyển đó, bạn cố nhớ lại giúp mình với , huhu , thứ 6 là mình phải nộp rồi
Ta có: \(a^2+3=\left(a+b\right)\left(a+c\right)\)
Áp dụng BĐT AM-GM ta có:
\(VT=\dfrac{a}{a^2+7}+\dfrac{b}{b^2+7}+\dfrac{c}{c^2+7}\le\sum\dfrac{a}{4\sqrt{a^2+3}}=\sum\dfrac{a}{4\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\sum\dfrac{a}{4}.\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\sum\dfrac{1}{8}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=\dfrac{3}{8}\)
Dấu = xảy ra khi a=b=c=1
P/s:\(\sum\limits_{x,y,z}x=x+y+z\) :Tổng hoán vị