\(2\left(a^7+b^7+c^7\right)=7abc\left(a^4+b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

Đề bài đúng phải là : Cho a,b,c thỏa mãn a+b+c=0 . CMR : \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

a) Từ \(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^5=-a^5\)

\(\Rightarrow b^5+5b^4c+10b^3c^2+10b^2c^3+5bc^4+c^5=-a^5\)

\(\Rightarrow\left(a^5+b^5+c^5\right)+5bc\left(b^3+2b^2c+2bc^2+c^3\right)=0\)

\(\Rightarrow\left(a^5+b^5+c^5\right)+5bc\left[\left(b+c\right)\left(b^2-bc+c^2\right)+2bc\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a^5+b^5+c^5\right)+5bc\left(b+c\right)\left(b^2+bc+c^2\right)=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[\left(b^2+2bc+c^2\right)+b^2+c^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)=5abc\left[\left(b+c\right)^2+b^2+c^2\right]\)

Vậy : \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

 

15 tháng 8 2018

cho 50 nếu trả lời đúng

6 tháng 6 2019

\(2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\left(a^2+b^2+c^2\right)+4\frac{ab+bc+ca}{abc}.\)

\(=2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)(vì abc=1)

\(=2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\)

\(=2\left(a+b+c\right)^2\)

Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)(bất đẳng thức cô si cho ba số không âm)

Đặt \(a+b+c=x\ge3\)

Dễ thấy : \(2x^2-7x+3=\left(2x-1\right)\left(x-3\right)\ge0\)

Hay \(2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow}a=b=c=1\)

6 tháng 6 2019

Đặt A = a + b + c . 

Áp dụng BĐT Cosi cho 3 số thực dương ta có : \(A\ge3^3\sqrt{abc}=3\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\cdot\frac{ab+bc+ca}{abc}-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\)

\(\Leftrightarrow2A^2-7A+3=\left(2A-1\right)\left(A-3\right)\ge0\)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 10 2020

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)