K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AC=AB(gt)

góc A chung

góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)

suy ra tam giác ABE= tam giác ACD(g.c.g)

suy ra BE=CD, AE=AD(đpcm)

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

a: Xét ΔBAC có BM là phân giác

nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)

=>\(\dfrac{AM}{5}=\dfrac{CM}{2}\)

mà AM+CM=AC=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{5}=\dfrac{CM}{2}=\dfrac{AM+CM}{5+2}=\dfrac{5}{7}\)

=>\(AM=5\cdot\dfrac{5}{7}=\dfrac{25}{7}\left(cm\right);CM=2\cdot\dfrac{5}{7}=\dfrac{10}{7}\left(cm\right)\)

b: Ta có: \(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{ACN}=\widehat{NCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABM}=\widehat{MBC}=\widehat{ACN}=\widehat{NCB}\)

Xét ΔABM và ΔACN có

\(\widehat{ABM}=\widehat{ACN}\)

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

=>AM=AN

Xét ΔABC có \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

nên MN//BC

25 tháng 4 2016

hình như bạn chép sai đề bài rồi.sao lại AB=6cm,AB=8cm là sao?

25 tháng 4 2016

Đó chỉ là số đo thôi, bỏ qua nó đi. Câu a của mình là tính BC.