Cho \(\Delta ABC\) cân tại A có tia phân giác góc B và C lần lượt cắt AC tại N và AB tại M (h.vẽ). Chứng minh rằng: MN // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABE và tam giác ACD có:
AC=AB(gt)
góc A chung
góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)
suy ra tam giác ABE= tam giác ACD(g.c.g)
suy ra BE=CD, AE=AD(đpcm)
a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)
=> ABC/2 = ACB/2
Mà ABD = CBD = ABC/2
ACE = BCE = ACB/2
Nên ABD = CBD = ACE = BCE
Xét t/g EBC và t/g DCB có:
góc EBC = DCB (cmt)
BC là cạnh chung
góc ECB = DBC (cmt)
Do đó, t/g EBC = t/g DCB (g.c.g)
=> BE = CD (2 cạnh tương ứng)
Mà AB = AC (gt) nên AB - BE = AC - CD
=> AE = AD
=> Tam giác AED cân tại A (đpcm)
b) tam giác ABC cân tại A => BAC = 180 độ - 2.ABC (1)
Tam giác EAD cân tại A => EAD = 180 độ - 2.AED (2)
Từ (1) và (2) => ABC = AED
Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)
a: Xét ΔBAC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{AM}{5}=\dfrac{CM}{2}\)
mà AM+CM=AC=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{2}=\dfrac{AM+CM}{5+2}=\dfrac{5}{7}\)
=>\(AM=5\cdot\dfrac{5}{7}=\dfrac{25}{7}\left(cm\right);CM=2\cdot\dfrac{5}{7}=\dfrac{10}{7}\left(cm\right)\)
b: Ta có: \(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACN}=\widehat{NCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABM}=\widehat{MBC}=\widehat{ACN}=\widehat{NCB}\)
Xét ΔABM và ΔACN có
\(\widehat{ABM}=\widehat{ACN}\)
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
nên MN//BC
hình như bạn chép sai đề bài rồi.sao lại AB=6cm,AB=8cm là sao?
Đó chỉ là số đo thôi, bỏ qua nó đi. Câu a của mình là tính BC.