Chứng minh hằng đẳng thức sau:
100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng hàng đẳng thức A^2-B^2=(A-B)(A+B) nhé còn phần b chuyển vế sang rồi dùng HĐT là được
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105-107^2\right)+\left(94^2-96^2\right)=0\)
\(\Leftrightarrow2\left(100+98+103+101-105-107-94-96\right)=0\)
\(\Leftrightarrow2\times0=0\)(ĐPCM)
Xét hiệu , ta có :
1002 + 1032 + 1052 + 942 - ( 1012 + 982 + 962 + 1072 )
= 1002 + 1032 + 1052 + 942 - 1012 - 982 - 962 - 1072
= ( 1002 - 982 ) + ( 1032 - 1012 ) - ( 1072 - 1052 ) - ( 962 - 942 )
= ( 100 - 98 ).( 100 + 98 ) + ( 103 - 101 ).( 103 + 101 ) - ( 107 - 105 ). ( 107 + 105 ) - ( 96 - 94 ).( 96 + 94 )
= 2.198 + 2.204 - 2.212 - 2.190 = 2.( 198 + 204 - 212 - 190)
= 2.0 = 0
Vậy 1002 + 1032 + 1052 + 942 = 1012 + 982 + 962 + 1072.
Đặt a = 100, ta có :
- Xét vế trái ta có :
\(a^2+\left(a+3\right)^2+\left(a+5\right)^2+\left(a-6\right)^2\)
\(=a^2+a^2+6a+9+a^2+10a+25+a^2-12a+16\)
\(=4a^2+4a+70\)
- Xét vế phải ta có :
\(\left(a+1\right)^2+\left(a-2\right)^2+\left(a-4\right)^2+\left(a+7\right)^2\)
\(=a^2+2a+1+a^2-4a+4+a^2-8a+16+a^2+14a+49\)
\(=4a^2+4a+70\)
Vậy \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)(đpcm)
\(VT-VP=\left(100^2-96^2\right)+\left(105^2-101^2\right)-\left(107^2-103^2\right)-\left(98^2-94^2\right)\)
\(=\left(100-96\right)\left(100+96\right)+\left(105-101\right)\left(105+101\right)-\left(107-103\right)\left(107+103\right)-\left(98-94\right)\left(98+94\right)\)
\(=4\left(196+206-210-192\right)=0\)
=> VT=VP
dùng hằng đẳng thức A^2 - B^2 = (A - B)(A + B) nhé phần b chuyển vế sang rồi dùng hđt là Okay
a) Đặt A = (2 + 1)(22 + 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = ( 22 - 1 ) (22 + 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = (24 - 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = (28 - 1)(28 +1)( 216 +1 )
=> A= (216 -1 ) (216 + 1) = 232 - 1 => đpcm
b) 1002 + 1032 + 1052 + 942 = 1012 + 982 + 962 + 1072
<=> \(\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105^2-107^2\right)+\left(94^2-96^2\right)\) = 0
<=> \(\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)\)+ (105 -107)(105+107) + (94 - 96)(96 + 94) = 0
<=> \(2.198+2.204-2.212-2.190\) = 0
<=> \(2\left(198+204-212-190\right)=0\)
<=> \(\left(198-190\right)+\left(204-212\right)=0\)
<=> \(-8+8=0\) (luôn đúng) => đpcm
P/s: đây ko phải bài lớp 10 đâu!
Xét hiệu :
\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)
\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2+101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(96-94\right)\left(96+94\right)\)\(-\left(107-105\right)\left(107+105\right)\)
\(=2.198+2.204-2.212-2.190\)
\(=2.\left(198+204-212-190\right)\)
\(=2.0\)
\(=0\)
VẬY dpcm
Ta có:
1002+1032+1052+942=1012+982+962+1072
=>1002+1032+1052+942-(1012+982+962+1072)=0
=>1002+1032+1052+942-1012-982-962-1072=0
=>(1002-982) + (1032-1012) + (1052-1072) + (942-962) = 0
=>(100-98)(100+98) + (103-101)(103+101) + (105-107)(105+107) + (94-96)(94+96) = 0
=>2.(100+98) + 2.(103+101) - 2.(105+107) - 2.(94+96) = 0
=>2.[(100+98)+(103+101)-(105+107)-(94+96)] = 0
=>2.(198+204-212-190)=0
=>2.0=0
Chứng tỏ 1002+1032+1052+942=1012+982+962+1072