Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)
Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)
100 + 98 + 96 + 94 +.....+ 2 - 97 -95
= 100 + (98 - 97) + (96-95) + ........ + (2-1)
= 100 + 1 +1 +....... + 1
= 100 +1 . 49
= 149
Chứng minh vế trái bằng vế phải:
\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)
\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)
\(\text{Chứng minh vế trái bằng vế phải: }\)
\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)
\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)
\(x^2+x+\frac{1}{2}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)
Vậy đa thức trên vô nghiệm
Xét hiệu :
\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)
\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2+101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(96-94\right)\left(96+94\right)\)\(-\left(107-105\right)\left(107+105\right)\)
\(=2.198+2.204-2.212-2.190\)
\(=2.\left(198+204-212-190\right)\)
\(=2.0\)
\(=0\)
VẬY dpcm
Ta có:
1002+1032+1052+942=1012+982+962+1072
=>1002+1032+1052+942-(1012+982+962+1072)=0
=>1002+1032+1052+942-1012-982-962-1072=0
=>(1002-982) + (1032-1012) + (1052-1072) + (942-962) = 0
=>(100-98)(100+98) + (103-101)(103+101) + (105-107)(105+107) + (94-96)(94+96) = 0
=>2.(100+98) + 2.(103+101) - 2.(105+107) - 2.(94+96) = 0
=>2.[(100+98)+(103+101)-(105+107)-(94+96)] = 0
=>2.(198+204-212-190)=0
=>2.0=0
Chứng tỏ 1002+1032+1052+942=1012+982+962+1072