K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Xét hiệu :

\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)

\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)

\(=\left(100^2-98^2\right)+\left(103^2+101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)

\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(96-94\right)\left(96+94\right)\)\(-\left(107-105\right)\left(107+105\right)\)

\(=2.198+2.204-2.212-2.190\)

\(=2.\left(198+204-212-190\right)\)

\(=2.0\)

\(=0\)

VẬY dpcm

3 tháng 6 2017

Ta có:  

1002+1032+1052+942=1012+982+962+1072

=>1002+1032+1052+942-(1012+982+962+1072)=0

=>1002+1032+1052+942-1012-982-962-1072=0

=>(1002-982) + (1032-1012) + (1052-1072) + (942-962) = 0

=>(100-98)(100+98) + (103-101)(103+101) + (105-107)(105+107) + (94-96)(94+96) = 0

=>2.(100+98) + 2.(103+101) - 2.(105+107) - 2.(94+96) = 0

=>2.[(100+98)+(103+101)-(105+107)-(94+96)] = 0

=>2.(198+204-212-190)=0

=>2.0=0

                     Chứng tỏ 1002+1032+1052+942=1012+982+962+1072

2 tháng 6 2017

a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)

Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)

2 tháng 10 2016

   100 + 98 + 96 + 94 +.....+ 2 - 97 -95

= 100 + (98 - 97) + (96-95) + ........ + (2-1)

= 100 + 1 +1 +....... + 1

= 100 +1 . 49

= 149

4 tháng 10 2016

nhóm 4 số thành 1 cặp 100+99-98-97=4

13 tháng 6 2016

Chứng minh vế trái bằng vế phải:

\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)

\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

13 tháng 6 2016

\(\text{Chứng minh vế trái bằng vế phải: }\)

\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)

\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

17 tháng 8 2019

\(x^2+x+\frac{1}{2}\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)

Vậy đa thức trên vô nghiệm

25 tháng 9 2016

x=100

Ta sẽ có: 1-1+1+1-1+1-1+1=0