Bài 3: Cho a,b,c dương thỏa mãn abc=8. Tính giá trị biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :
\(a+b\ge2\sqrt[2]{ab}\)
\(b+c\ge2\sqrt[2]{bc}\)
\(c+a\ge2\sqrt[2]{ca}\)
Nhân theo vế các bất đẳng thức cùng chiều ta được :
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(2\sqrt[2]{ab}\right)\left(2\sqrt[2]{bc}\right)\left(2\sqrt[2]{ca}\right)\)
\(< =>B\ge8\sqrt[2]{a^3b^3c^3}=8abc\)
Mặt khác theo giả thiết ta có : \(abc=8\)
Khi đó \(B\ge8.8=64\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)
Vậy \(Min_B=64\)khi \(a=b=c=2\)
Đặt a/b=b/c=c/a=k
=>a=bk; b=ck; c=ak
=>a=bk; b=ak*k=ak^2; c=ak
=>a=ak^3; b=ak^2; c=ak
=>k=1
=>a=b=c
\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)
Chọn đáp án B
Suy ra điểm N biểu diễn z nằm trên hình bình hành giới hạn bởi các đường thẳng . Các đỉnh của hình bình hành là
+ Có Hi thuộc đoạn chứa trên di tương ứng thì
với những Hi thuộc đoạn chứa trên di tương ứng
Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)
Đơn giản là kiên nhẫn tính toán và tách biểu thức:
\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)
Sau đó Cô-si cho từng ngoặc là được
Hình load lên không xem được. Bạn nên gõ đề để được hỗ trợ tốt hơn nhé.