K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Hình load lên không xem được. Bạn nên gõ đề để được hỗ trợ tốt hơn nhé.

11 tháng 7 2020

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :

\(a+b\ge2\sqrt[2]{ab}\)

\(b+c\ge2\sqrt[2]{bc}\)

\(c+a\ge2\sqrt[2]{ca}\)

Nhân theo vế các bất đẳng thức cùng chiều ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(2\sqrt[2]{ab}\right)\left(2\sqrt[2]{bc}\right)\left(2\sqrt[2]{ca}\right)\)

\(< =>B\ge8\sqrt[2]{a^3b^3c^3}=8abc\)

Mặt khác theo giả thiết ta có : \(abc=8\)

Khi đó \(B\ge8.8=64\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

Vậy \(Min_B=64\)khi \(a=b=c=2\)

11 tháng 7 2020

sửa lại cho mình  dòng 7 trong căn là mũ 2 nhé , đánh lộn 

Đặt a/b=b/c=c/a=k

=>a=bk; b=ck; c=ak

=>a=bk; b=ak*k=ak^2; c=ak

=>a=ak^3; b=ak^2; c=ak

=>k=1

=>a=b=c

\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)

2 tháng 11 2018

Chọn đáp án B

Suy ra điểm N biểu diễn z nằm trên hình bình hành giới hạn bởi các đường thẳng . Các đỉnh của hình bình hành là

+ Có Hi thuộc đoạn chứa trên di tương ứng thì

với những Hi thuộc đoạn chứa trên di tương ứng 

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ