K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

\(\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}+2-\sqrt{3}+2.\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)

\(=4+2.\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(=4+2.\sqrt{4-3}=4+2=6\)

\(\Rightarrow\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)

30 tháng 5 2017

Cách khác:

Ta có: \(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(\Rightarrow\sqrt{2}A=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

\(\Rightarrow A=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

Sửa đề: \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

Ta có: \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)

=1

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)^2}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\sqrt{2-\sqrt{3}}=1\)

24 tháng 5 2022

e có phát hiện mới:v cj chung lớp vs cj kia đúng hemm:v

25 tháng 5 2022

\(R=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\left(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\right)\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{\left(2+\sqrt{2+\sqrt{2+\sqrt{3}}}\right)\left(2-\sqrt{2+\sqrt{2+\sqrt{3}}}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(\sqrt{2+\sqrt{2+\sqrt{3}}}\right)^2}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}.\left(\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\right)\\ =\sqrt{2+\sqrt{3}}.\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(2-\sqrt{2+\sqrt{3}}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\\ =\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\\ =\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\\ =\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\\ =\sqrt{4-\sqrt{3^2}}\\ =\sqrt{4-3}\\ =\sqrt{1}\\ =1\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)

=1

3 tháng 8 2023

=√2+√3⋅√2+√2+√3⋅√22−(2+√2+√3)2=2+3⋅2+2+3⋅22−(2+2+3)2

=√2+√3⋅√2+√2+√3⋅√4−2−√2+√3=2+3⋅2+2+3⋅4−2−2+3

=√2+√3⋅√2+√2+√3⋅√2−√2+√3=2+3⋅2+2+3⋅2−2+3

=√2+√3⋅√4−2−√3=2+3⋅4−2−3

=√2+√3⋅√2−√3=√4−3=1bucqua

4 tháng 7 2017

Sai đề!

4 tháng 7 2017

Sửa lại!

\(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}..\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}.\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}.\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1.\)

\(A=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}+\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)+\sqrt{2}\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{2\sqrt{3}}\)

\(=\dfrac{\sqrt{2}\left(2\sqrt{3}-2+3-\sqrt{3}+2\sqrt{3}+2-3-\sqrt{3}\right)}{2\sqrt{3}}\)

\(=\dfrac{4\sqrt{3}-2\sqrt{3}}{2\sqrt{3}}\cdot\sqrt{2}=\sqrt{2}\)