K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2023

Đề bài phải sửa thành AN=NC mới c/m được

A B C D

MA=MB (gt)

AN=NC (gt)

=> MN là đường trung bình của tg ABC

=> MN//BC và \(MN=\dfrac{BC}{2}\)

Ta có

\(BC\perp AB\) mà MN//BC => \(MN\perp AB\) (1)

Ta có

\(BC=AB\Rightarrow MN=\dfrac{AB}{2}\)

Mà \(MA=MB=\dfrac{AB}{2}\)

=> MN = MA (2)

Từ (1) và (2) => tg AMN vuông cân tại M

24 tháng 10 2023

 

a) Do ABCD là hình vuông (gt)

\(\Rightarrow AB=AD\)

\(\widehat{ABM}=\widehat{ADN}=90^0\)

Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:

\(AB=AD\left(cmt\right)\)

\(BM=DN\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)

\(\Rightarrow AM=AN\) (hai cạnh tương ứng)

\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)

Ta có:

\(\widehat{BAM}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{MAN}=90^0\)

\(\Delta AMN\) có:

\(AM=AN\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) cân tại A

Mà \(\widehat{MAN}=90^0\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) vuông cân tại A

b) Do \(\Delta AMN\) cân tại A

E là trung điểm của MN

\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)

\(\Rightarrow AE\perp MN\)

\(\Rightarrow EF\perp MN\)

Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:

\(EM=EN\left(gt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)

\(\Rightarrow FM=FN\) (hai cạnh tương ứng)

Xét \(\Delta FAN\) và \(\Delta FAM\) có:

\(FA\) là cạnh chung

\(FN=FM\left(cmt\right)\)

\(AN=AM\left(cmt\right)\)

\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)

31 tháng 7 2019

#)Góp ý :

Bạn tham khảo nhé :

gọi giao điểm của AC và BD là O 

gọi H là trung điểm của OD 

Do AN =3NC và O là trung điểm AC 

=> N là trung điểm của OC 

=> NH là đường trung bình của tam giác OCD 

=> NH // CD // AB và NH = 1/2 CD = 1/2 AB = AM 

=> AMNH là hình bình hành 

=> MN // AH (1) 

Lại có: trong tam giác ADN có AO vuong AN và NH vuông AD 

=> H là trực tâm tam giác ADN 

=> AH vuong ND (2) 

Từ (1)(2) => MN vuông ND 

=> tam giac DNM vuong tại N 

Kéo dài NH cắt AD tại K 

Rõ ràng tam giác AKN là tam giác vuông cân (do gocKAN = 45) 

=> AK = KN 

=> 2 tam giac vuông AHK và NDK bằng nhau (gcg) 

=> AH = ND 

mà AH = MN (do AMNH là hình bình hành) 

=> MN = ND 

=> tam giac DMN vuông cân tại N

Nguồn : Cho hình vuông ABCD có M là trung điểm của AB, N thuộc đoạn AC sao cho NA = 3NC. Chứng minh tam giác DMN vuông cân tại N. Tính độ dài cạnh của hình vuông biết MN = √10 - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Link : https://lazi.vn/edu/exercise/cho-hinh-vuong-abcd-co-m-la-trung-diem-cua-ab-n-thuoc-doan-ac-sao-cho-na-3nc-chung-minh-tam-giac-dmn

11 tháng 5 2015

Đo gọc chưa bạn, bài này lấy trong sách của thầy tui đó.

15 tháng 3 2020

nè câu a) CM : BD=CE 

mà sao đề cho BO

mình làm theo BD nhé

a) xét tam giác zuông BEC zà tam giác zuông BDC có

\(\hept{\begin{cases}ch:BC\left(chung\right)\\gn:\widehat{EBC}=\widehat{DCB}\left(ABCcân\right)\end{cases}}\)

=> 2 tam giác zuông trên = nhau nha

=>EB=DC

+) xét tam giác zuông BEH zà tam giác zuông DHC có

\(\hept{\begin{cases}gn:\widehat{EHB}=\widehat{DHC}\left(đđ\right)\\cgz:EB=DC\left(cmt\right)\end{cases}}\)

=> 2 tam giác zuông kia = nhau

=> BD=CE

b) câu b ghi đề trả hiểu j

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

27 tháng 10 2018

Chọn D

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E