3/2+ 7/6 + 13/12 + 21/20 +31/30 + 42/41+ 57/56+ 73/71+ 91/90. mọi ng cho mình lời giải chi tiết vs ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1+1+1+1+1+1+1+1+1+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=9+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
=9+9/10=99/10
\(2x+1+\frac{1}{6}+1+\frac{1}{12}+..+1+\frac{1}{90}=10\)
=> 2x + 8 + \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=10\)
=> 2x + \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=10-8\)
\(2x+1-\frac{1}{10}=2\)
=> 2x + \(\frac{9}{10}=2\)
=> 2x = 2 - 9/10
=>2x = 11/10
=> x = 11/10 : 2
x = 11/20
2x+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90=10
2x+1+1/6+1+1/12+1+1/20+1+1/30+1+1/42+1+1/56+1+1/72+1+1/90=10
2x+(1+1+1+1+1+1+1+1)+(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10)=10
2x+8+(1-1/2+1/2-1/3+...+1/9-1/10)=10
2x+1-1/10=10-8
2x+9/10=2
2x=2-9/10
2x=11/10
x=11/10/2
x=11/20
A - B = \(\left(1+\frac{1}{2}+1+\frac{1}{12}+1+\frac{1}{30}+1+\frac{1}{56}+1+\frac{1}{90}\right)-\left(1-\frac{1}{6}+1-\frac{1}{20}+1-\frac{1}{42}+1-\frac{1}{72}+1-\frac{1}{110}\right)\)= \(\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)-\left(5-\frac{1}{6}-\frac{1}{20}-\frac{1}{42}-\frac{1}{72}-\frac{1}{110}\right)\)\
= \(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}-5+\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\)
= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)
\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)
\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}\)
\(\Rightarrow A=\frac{10}{11}\)
A=1+1/2+1+1/6+1+1/12+...+1+1/90=
=9+1/2+1/6+1/12+...+1/90
1/2+1/6+1/12+...+1/90=
1/1x2+1/2x3+2/3x4+...+1/9x10=
\(=\dfrac{2-1}{1x2}+\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+...+\dfrac{10-9}{9x10}=\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\Rightarrow A=9+\dfrac{9}{10}=9\dfrac{9}{10}\)