K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

\(sin^6a+cos^6a+3sin^2a.cos^2a=sin^6a+cos^6a+3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=\left(sin^2a+cos^2a\right)^3=1\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)

\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)

18 tháng 12 2015

\(A=\sin^6\alpha+\cos^6\alpha+3.1.\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3.\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)

NV
26 tháng 3 2022

\(\dfrac{2sina+cosa}{2sin^3a-cos^3a}=\dfrac{\dfrac{2sina}{cos^3a}+\dfrac{cosa}{cos^3a}}{\dfrac{2sin^3a}{cos^3a}-\dfrac{cos^3a}{cos^3a}}=\dfrac{2tana.\dfrac{1}{cos^2a}+\dfrac{1}{cos^2a}}{2tan^3a-1}\)

\(=\dfrac{2tana\left(1+tan^2a\right)+1+tan^2a}{2tan^3a-1}=...\) (thay số và bấm máy)

27 tháng 3 2022

Em vẫn ch hiểu tại sao cosa/cos3a lại ra 1/cos2a thầy giải thích giúp em vs ạ 

1 tháng 7 2018

E = sin^6 + cos^6 + 3sin^2.cos^2

= (sin^2 + cos^2)(sin^4 - sin^2.cos^2 + cos^4) + 3 sin^2.cos^2

= (sin^2 + cos^2)^2 - 3sin^2.cos^2 + 3sin^2.cos^2

= 1

25 tháng 4 2023

Này là kiến thức lớp 10 mà bạn...

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

26 tháng 7 2017

Kết quả:

A=1    B=2   C=-4

3 tháng 10 2018

\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)

\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)

29 tháng 7 2021

Ta có: \(cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}\)

Lại có: \(\dfrac{1}{cot\alpha}=tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{sin^2\alpha}{cos\alpha.sin\alpha}=\dfrac{1}{\sqrt{5}}\)

\(\Rightarrow A=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}+\dfrac{sin^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}+\dfrac{1}{\sqrt{5}}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)

Ta có : cot α = \(\sqrt{5}\Rightarrow\dfrac{cos\alpha}{sin\alpha}=\sqrt{5}\Rightarrow cos\alpha=\sqrt{5}.sin\alpha\)

\(A=\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}\)

\(A=\dfrac{sin^2\alpha+\left(\sqrt{5}sin\alpha\right)^2}{sin\alpha.\sqrt{5}sin\alpha}=\dfrac{sin^2\alpha+5sin^2\alpha}{\sqrt{5}sin^2\alpha}\)

\(A=\dfrac{6sin^2\alpha}{\sqrt{5}sin^2\alpha}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)