Tìm x giúp mik
\(\left(x-5\right)^2-7\left(5-x\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Để olm.vn giúp em nhá:
(\(x-5\))2002 + (2\(x\) + 1)2000 = 0
vì (\(x\) - )2022 ≥ 0 ∀ \(x\)
(2\(x\) + 1)2000 \(\ge\) 0 ∀ \(x\)
⇒ (\(x\) - 5)2002 + (2\(x\) + 1)2000 = 0
⇔ \(\left\{{}\begin{matrix}\left(x-5\right)^{2002}=0\\\left(2x+1\right)^{2000}=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=5\\2x=-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\)
vì - \(\dfrac{1}{2}\) \(\ne\) 5 vậy \(x\in\) \(\varnothing\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
\(\left(x-5\right)^2-7\left(5-x\right)=0\)
\(\Leftrightarrow\left(x-5\right)^2+7\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)+7\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{5;-2\right\}\)
\(\Leftrightarrow\left(x-5\right)^2+7\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x-5+7\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)