Chứng minh rằng : \(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}.b+a^{n-3}.b^2+...+a.b^{n-2}+b^{n-1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)
\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
2/Theo đề ta có:
\(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)(1)
Lại có: \(x-a=b-y\) Thay vào (1) đc
\(\left(x-a\right)\left(x+a\right)-\left(x-a\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a-b-y\right)=0\Rightarrow x=a\)(2)
Tương tự ta cũng có:
\(\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\Rightarrow b=y\)(3)
(2) và (3) có ĐPCM
Bạn tham khảo câu trả lời ở đây nhé:
http://pitago.vn/question/cho-a-b-c-doi-mot-khac-nhau-thoa-man-abacbc-1-tinh-gia-tr-40688.html
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko