K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

\(M=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(\ge2\sqrt{\frac{a^2}{16a^2}}+2\sqrt{\frac{b^2}{16b^2}}+\frac{15\left(\frac{1}{a}+\frac{1}{b}\right)^2}{32}\ge1+\frac{\frac{240}{\left(a+b\right)^2}}{32}\ge\frac{17}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

26 tháng 3 2021

Ta có:

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{b-1}.\frac{b^2}{a-1}}\)

\(=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\)

Vì \(\frac{a}{\sqrt{a-1}}\ge2;\frac{b}{\sqrt{b-1}}\ge2\Rightarrow A\ge8\)

=> min A=8 <=> a=b=2

26 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\)

Đặt a + b - 2 = x => x > 0

Khi đó \(A\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{\left(x+2\right)^2}{x}=\frac{x^2+4x+4}{x}=\left(x+\frac{4}{x}\right)+4\ge2\sqrt{x\cdot\frac{4}{x}}+4=8\)( AM-GM )

Đẳng thức xảy ra <=> x = 2 => a=b=2

Vậy MinA = 8 <=> a=b=2

12 tháng 6 2016

Từ 2a+2b+2c=3abc chia cả hai vế cho abc>0 ta được

\(2\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)=3=>\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{2}\)

\(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

Ta có 

28 tháng 3 2018

Dùng Cô-si ngược dấu: 
Ta có : a\(1+b^2)=a-(ab^2/(1+b^2))>=a-(ab^2/2b)=... 
Tương tự ta có:b/(1+c^2)>=b-bc/2 
c/(1+a^2)>=c-ac/2 
Cộng vế với vế ta có A>=(a+b+c)-(ab+bc+ca)/2 
Mà 3(ab+bc+ca)<=a^2+b^2+c^2+2ab+2bc+2ca 
<=>3(ab+bc+ca)<=(a+b+c)^2 
<=>-(ab+bc+ca)>=-(a+b+c)^2/3 
Thay vào ta có: A>=(a+b+c)-(a+b+c)^2/6=3/2 
Dấu = xảy ra<=>a=b=c=1/3

28 tháng 3 2018

đề bài của mình mẫu là 1+2b^2 ko phải 1+b^2

Đặt \(a-1=x>0,b-1=y>0\), ta có

\(A=\frac{\left(x+1\right)^2}{x}+\frac{\left(y+1^2\right)}{y}=\frac{x^2+2x+1}{x}+\frac{y^2+2y+1}{y}\)

\(=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+4\)

Với \(x>0,y>0\)ta có \(x+\frac{1}{x}\ge2,y+\frac{1}{y}\ge2\)nên \(A\ge8\)

\(Min_A=8\Leftrightarrow x=y=1\Leftrightarrow a=b=2\)

P/s tham khảo nha

9 tháng 8 2020

Sử dụng \(AM-GM\)ta có :

\(\frac{a^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\left(2a\right)^2}=4a\)

Tương tự : \(\frac{b^2}{b-1}+4\left(b-1\right)\ge4b\)

Cộng theo vế : \(A+4\left(a+b\right)-8\ge4\left(a+b\right)\)

\(< =>A\ge8\)

Dấu = xảy ra \(< =>a=b=2\)

9 tháng 4 2019

giúp mk vs mai mk phải nộp rồi