K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

giúp mk vs mai mk phải nộp rồi

29 tháng 5 2021

Ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

=> \(\frac{a^2+b^2}{ab}\ge2\)

=> a2 + b2 \(\ge\)2ab

=>  a2 + b2 - 2ab\(\ge\)0

=> (a - b)2 \(\ge\)0 (đúng)  

Dấu "=" xảy ra <=> a - b = 0 => a = b

=> Bất đẳng thức được chứng minh

29 tháng 5 2021

P = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=> \(\left(a+b+c\right).P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=> \(3P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=> \(3P=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge3+2+2+2=9\left(cmt\right)\)

=> P \(\ge3\)

Dấu "=" xảy ra <=> a = b = c 

mà a + b + c = 3

=> a = b = c = 1

Vậy Min P = 3 <=> a = b= c = 1

19 tháng 12 2019

Ta co:

\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\left(\frac{1}{a}-2\right)^2+\left(\frac{1}{b}-2\right)^2+6\left(\frac{1}{a}+\frac{1}{b}\right)-6\ge\frac{24}{a+b}-6=18\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

29 tháng 1 2020

\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\) vào ta được:

\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Vậy ......................