1/2+(-1/57)+1/3+1/6
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.\text {DN}`
\(3^{x+2}+4\cdot3^{x+1}+3^{x-1}=6^6\)
`=> 3^x*3^2 + 4*3^x*3 + 3^x * 1/3 = 6^6`
`=>3^x*(3^2 + 12 + 1/3) = 6^6`
`=> 3^x * 64/3 = 6^6`
`=> 3^x = 6^6 \div 64/3`
`=> 3^x = 2187`
`=> 3^x = 3^7`
`=> x = 7`
Vậy, `x = 7.`
\(\dfrac{1}{5}\times x-\dfrac{2}{3}=\dfrac{1}{10}\times x+\dfrac{5}{6}\)
\(\dfrac{1}{5}x-\dfrac{2}{3}-\dfrac{1}{10}x-\dfrac{5}{6}=0\)
\(\dfrac{1}{5}x-\dfrac{1}{10}x-\dfrac{2}{3}-\dfrac{5}{6}=0\)
\(\dfrac{1}{10}x-\dfrac{3}{2}=0\)
\(\dfrac{1}{10}x=\dfrac{3}{2}\)
\(x=15\)
\(\dfrac{1}{5}\).x - \(\dfrac{2}{3}\) = \(\dfrac{1}{10}\).x + \(\dfrac{5}{6}\)
⇒ \(\dfrac{1}{5}\).x - \(\dfrac{1}{10}\).x = \(\dfrac{5}{6}\) + \(\dfrac{2}{3}\)
⇒ \(\dfrac{2}{10}\).x - \(\dfrac{1}{10}\).x = \(\dfrac{5}{6}\) + \(\dfrac{4}{6}\)
⇒ \(\dfrac{1}{10}\).x = \(\dfrac{9}{6}\)
⇒ x = \(\dfrac{9}{6}\) : \(\dfrac{1}{10}\)
⇒ x = \(\dfrac{9}{6}\) . 10
⇒ x = \(\dfrac{90}{6}\)
⇒ x = 15
Vậy x = 15
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{1989}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{3980}{1991}.\dfrac{1}{2}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1991}\)
\(\Rightarrow x+1=1991\)
\(\Rightarrow x=1990\)
\(a\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\left(\frac{1}{2}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\frac{2}{5}.y=\frac{1}{3}\)
\(y=\frac{1}{3}:\frac{2}{5}\)
\(y=\frac{5}{6}\)
\(b,\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}:\frac{10}{11}\)
\(y=\frac{22}{30}\)
`1/2+(-1/57)+1/3+1/6`
`=(1/2+1/3+1/6)-1/57`
`=(3/6+2/6+1/6)-1/57`
`=6/6-1/57`
`=1-1/57`
`=57/57-1/57`
`=56/57`
=57/114 + 2/114 + 38/114 + 19/114
= 58/57