Giải các bất phương trình sau
a) 3x2-3x(-2+x) < hoặc = 36
b) (x+2)2-9 > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,3x^2-3x(-2+x) <= 36`
`<=> 3x^2 + 6x -3x^2 <= 36`
`<=> 6x <= 36`
`<=> x <= 6`
Vậy bpt đã cho có tập nghiệm `x <= 6`
`b, (x+2)^2 -9>0`
`<=> (x+2)^2 > 9`
`<=>(x+2)^2 > 3^2`
`<=> x+2> +- 3`
`<=> x>1;-5`
Vậy bpt đã cho có tập nghiệm `x>1` hoặc `x> -5`
a: =>3x^2+6x-3x^2<=36
=>6x<=36
=>x<=6
b: =>(x-1)(x+5)>0
=>x>1 hoặc x<-5
a: =>(x-1)(3x-4)>0
=>x>4/3 hoặc x<1
b: =>x^3-3x^2-10x^2+30x+12x-36>0
=>(x-3)(x^2-10x+12)>0
Th1: x-3>0và x^2-10x+12>0
=>x>5+căn 13
TH2: x-3<0 và x^2-10x+12<0
=>x<3 và 5-căn 13<x<5+căn 13
=>3<x<5+căn 13
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
\(a,3x^2-3x\left(-2+x\right)\le36\)
\(\Leftrightarrow3x^2+6x-3x^2-36\le0\)
\(\Leftrightarrow6x\le36\)
\(\Leftrightarrow x\le6\)
\(b,\left(x+2\right)^2-9>0\)
\(\Leftrightarrow\left(x+2\right)^2-3^2>0\)
\(\Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x+5>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-5\end{matrix}\right.\)
b: =>(x+2-3)(x+2+3)>0
=>(x+5)(x-1)>0
=>x-1>0 hoặc x+5<0
=>x>1 hoặc x<-5