1^3 + 2^3 + 3^3 + 4^3 +...+ 100^3
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
=1-2+3-4+...+19-20
=(1-2)+(3-4)+...+(19-20)
=(-1)+(-1)+...+(-1)
=(-1).10
=-10
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1).50
=-50
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
=(2-4)+(6-8)+...+(48-50)
=(-2)+(-2)+...+(-2)
=(-2).13
=-26
4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99
=(-1)+(3-5)+(7-9)+...+(97-99)
=(-1)+(-2)+(-2)+...+(-2)
=(-1)+(-2).45
=(-1)+(-90)
=(-91)
5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100
=(1+2-3-4)+...+(97 + 98 – 99 - 100)
=(-4)+...+(-4)
=(-4).25
=-100
\(HT\)
1/ \(1+(-2)+3+(-4)+...+19+(-20)\)
\(=(-1+3+5+...+19)-(2+4+6+...+20)\)
\(=(19-1):2+1=10\)
\(=(1+19).10:2-(20+2).10:2\)
\(=100-110\)
\(=-10\)
2/ \(1 – 2 + 3 – 4 + . . . + 99 – 100\)
\(= ( 1 - 2 ) + ( 3 - 4) + .... + ( 99 - 100 )\)
\(= -1 + ( -1) + ....+ ( -1)\)
\(=(-1).50\)
\(=-50\)
3/ \( 2 – 4 + 6 – 8 + . . . + 48 – 50\)
\(= 2 +( – 4 + 6)+( – 8+10) + . . . +( -44+46)+ ( 48 – 50)\)
\(= 2+2+2+...+2+( -2) \)
\(= 2.12 +( -2 ) \)
\(=22\)
4/ \(-1+3-5+7-...+97-99\)
\(= ( -1 + 3 ) + ( -5 + 7 )+....+( -93 +95 ) + ( 97 - 99 )\)
\(= -2+( -2)+...+( -2)+2\)
\(= -2.24+2\)
\(=-46\)
5/ \( 1+2-3-4+...+97+98-99-100\)
\(= ( 1+2-3-4)+...+( 97+98-99-100)\)
\(= -4+...+( -4)\)
\(=(-4).25\)
\(=-100\)
A. \(\left(x+1\right)+\left(x+2\right)+......+\left(x+100\right)=5750\)
\(x+1+x+2+....+x+100=5750\)
\(100x+\left(1+2+3+.......+100\right)=5750\)
\(100x+5050=5750\)
\(100x=700\)
\(x=700:100=7\)
B. x+(1+2+......+100) = 2000
x + 5050 = 2000
x = 2000 - 5050
x= -3050
C. ( x-1 )+(x-2)+......+( x - 100 ) = 50
x-1+x-2+.........+x-100 = 50
100x + ( -1-2-........-100 ) = 50
100x + ( - 5050 ) = 50
100x = 50 + 5050
100 x = 5100
x = 5100 : 100
x = 51
A . \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=\frac{700}{100}=7\)
B. \(x+\left(1+2+3+4+5+....+100\right)=2000\)
\(x+\frac{\left(100+1\right).100}{2}=2000\)
\(x+5050=2000\)
\(\Rightarrow x=2000-5050=-3050\)
C. \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+....+\left(x-100\right)=50\)
\(\left(x+x+x+...+x\right)-\left(1+2+3+...+100\right)=50\)
\(100x-5050=50\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
A = 13 + 23 + 33 + 43 +...+ 1003
Ta có: B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2
Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)
Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2
Ta cần chứng minh B đúng với n = k + 1.
⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2
Ta có:
B = 13 + 23 + 33 +....+ k3 + (k+1)3
B = (1+2+3+...+k)2 + (k + 1)3
B = {(k +1)k:2}2 + (k+1)3 = (k+1)2{ \(\dfrac{k^2}{4}\) + k + 1} =(k+1)2(k2+4k+4)2: 4
B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4
B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2
Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2
⇒B = (1+2+3+...+ k+1)2 (đpcm)
Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2
Áp dụng công thức trên ta có:
A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2
C = 1 + 2 + 3 + 4 +...+100
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100
Tổng dãy số trên là: C = (100 +1)\(\times\) 100 : 2 = 5050
A = 50502
A = 13 + 23 + 33 + 43 +...+ 1003
Ta có: B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2
Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)
Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2
Ta cần chứng minh B đúng với n = k + 1.
⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2
Ta có:
B = 13 + 23 + 33 +....+ k3 + (k+1)3
B = (1+2+3+...+k)2 + (k + 1)3
B = {(k +1)k:2}2 + (k+1)3 = (k+1)2{ �244k2 + k + 1} =(k+1)2(k2+4k+4)2: 4
B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4
B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2
Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2
⇒B = (1+2+3+...+ k+1)2 (đpcm)
Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2
Áp dụng công thức trên ta có:
A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2
C = 1 + 2 + 3 + 4 +...+100
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100
Tổng dãy số trên là: C = (100 +1)×× 100 : 2 = 5050
A = 50502
HT!