cho tam giác ABC có góc A = 120 dộ AD laf tia phân giác . chứng minh 1 / AB = 1/ AC = 1/AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (Xem lại đề) xửa : t/giác ADB = t/giác ADC
Xét t/giác ADB và t/giác ADC
có: AB = AC (gt)
AD : chung
BD = DC (gt)
=> t/giác ADB = t/giác ADC (c.c.c)
b) Ta có: t/giác ADB = t/giác ADC (cmt)
=> \(\widehat{BAD}=\widehat{DAC}\)(2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Ta có: t/giác ADB = t/giác ADC (cmt)
=> \(\widehat{ADB}=\widehat{ADC}\) (2 góc t/ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(kề bù)
=> \(\widehat{ADB}=\widehat{ADC}=90^0\)
=> AD \(\perp\)BD
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(Cạnh huyền-góc nhọn)
Suy ra: AB=AE(Hai cạnh tương ứng)
b) Ta có: ΔABD=ΔAED(cmt)
nên DB=DE(hai cạnh tương ứng)
Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE(cmt)
\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔBDF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
c) Ta có: ΔBDF=ΔEDC(cmt)
nên BF=EC(hai cạnh tương ứng)
Ta có: AB+BF=AF(B nằm giữa A và F)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(cmt)
và BF=EC(cmt)
nên AF=AC
Xét ΔAFC có AF=AC(cmt)
nên ΔAFC cân tại A(Định nghĩa tam giác cân)
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(ACD\) có:
\(AB=AC\left(gt\right)\)
\(BD=CD\) (vì D là trung điểm của \(BC\))
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\left(c-c-c\right)\)
b) Xét 2 \(\Delta\) \(ABD\) và \(MCD\) có:
\(AD=MD\left(gt\right)\)
\(\widehat{ADB}=\widehat{MDC}\) (vì 2 góc đối đỉnh)
\(BD=CD\) (như ở trên)
=> \(\Delta ABD=\Delta MCD\left(c-g-c\right)\)
=> \(AB=MC\) (2 cạnh tương ứng).
c) Theo câu b) ta có \(\Delta ABD=\Delta MCD.\)
=> \(\widehat{ABD}=\widehat{DMC}\) (2 góc tương ứng).
Hay \(\widehat{ABC}=\widehat{DMC}.\)
Mà \(\widehat{ABC}=65^0\left(gt\right)\)
=> \(\widehat{DMC}=65^0.\)
Vậy \(\widehat{DMC}=65^0.\)
Chúc bạn học tốt!