chứng minh T=1/5+1/13+12/15+...+1/102+112<9/20
giúp mìn nhé:)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=\)\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(A=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Ta thấy :
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{61}+\dfrac{1}{62}\)
\(\Rightarrow A< \dfrac{1}{5}+\left(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}\right)\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(\Rightarrow A< \dfrac{10}{20}=\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\rightarrowđpcm\)
( 1 + 2 + .... + 99 + 100 ) . ( 12 + 22 + .... + 102) . ( 65 . 111 - 13 . 15 . 37)
=( 1 + 2 + .... + 99 + 100 ) . ( 12 + 22 + .... + 102) . ( 13. 5 . 3. 37 - 13 . 15
37)
=( 1 + 2 + .... + 99 + 100 ) . ( 12 + 22 + .... + 102) . ( 13. 15 . 37 - 13 . 15
37)
=( 1 + 2 + .... + 99 + 100 ) . ( 12 + 22 + .... + 102) . 0
=0
\(\left(1+2+...+100\right)\cdot\left(1^2+2^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot15\cdot37\right)\)
\(=\left[65\cdot111\left(1-1\right)\right]\cdot\left(1+2+...+100\right)\cdot\left(1^2+2^2+...+10^2\right)\)
=0
Ta thấy:T<1/5+1/12+12/24+...+1/220=1/5+1/2(1/6+1/12+...+1/110)
=1/5+1/2(1/2.3+1/3.4+...+1/11.10)
=1/5+1/2(1/2-1/3+1/3-1/4+....+1/10-1/11)
=1/5+1/2(1/2-1/11)
=1/5+9/44
=89/220
mà 89/220<99/220=9/20
=>T<9/20
vậy T<9/20
đừng bảo bn nào lớp tớ là tớ dùng olm nhé