tính nhanh 1/2+ 1/6 + 1/18 + 1/54 +...1/4374
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S =\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\)
3S = \(3\times\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
3S \(=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\)
3S - S \(=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
2S = \(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-...-\frac{1}{1458}-\frac{1}{4374}\)
2S = \(\frac{3}{2}-\frac{1}{4374}\)
2S = \(\frac{3280}{2187}\)
\(\Rightarrow S=\frac{3280}{2187}:2=\frac{4373}{8748}\)
Ta có: \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\)
\(\Leftrightarrow3\cdot C=3\cdot\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
\(\Leftrightarrow3\cdot C=\frac{3}{2}+\frac{3}{6}+\frac{3}{18}+\frac{3}{54}+...+\frac{3}{1458}+\frac{3}{4374}\)
\(\Leftrightarrow3\cdot C-C=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{486}+\frac{1}{1458}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
\(\Leftrightarrow2\cdot C=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-\frac{1}{18}-\frac{1}{54}-...-\frac{1}{4374}\)
\(\Leftrightarrow2\cdot C=\frac{3}{2}-\frac{1}{4374}\)
\(\Leftrightarrow2\cdot C=\frac{6561}{4374}-\frac{1}{4374}=\frac{3280}{2187}\)
\(\Leftrightarrow C=\frac{3280}{2187}:2=\frac{3280}{2187}\cdot\frac{1}{2}=\frac{1640}{2187}\)
Cái này ko làm theo quy tắc gì hết em nhé, chỉ là cách làm của dạng này thôi nha !!!!!
( nhớ ra nhiều bài để giải kiếm sp nha chứ dạo này ko lm đc j hết )
Ta thấy:
\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4374}\\ =\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\right)\\ =\frac{1}{2}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
Mà:
\(\frac{1}{3}P=\frac{1}{2}\cdot\frac{1}{3}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^7}\right)\\ =\frac{1}{2}\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
Suy ra: \(P-\frac{1}{3}P=\frac{1}{2}\left[\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\right]\)
hay \(\frac{2}{3}P=\frac{1}{2}\left(\frac{1}{3^0}-\frac{1}{3^8}\right)=\frac{1}{2}\left(1-\frac{1}{6561}\right)=\frac{3280}{6561}\)
Vậy \(P=\frac{3280}{6561}:\frac{2}{3}=\frac{1640}{2187}\).
Chúc bạn học tốt nha.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)
\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)
Kiến thức cần nhớ:
Đấy là dạng tính nhanh phân số mà mẫu nọ gấp một số lần mẫu kia, ta nhân cả hai vế với số lần, trừ vế cho vế, triệt tiêu các hạng tử giống nhau, rút gọn ta được tổng cần tìm.
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\)+...+ \(\dfrac{1}{1458}\)+\(\dfrac{1}{4374}\)
A \(\times\) 3 = \(\dfrac{3}{2}\)+\(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\)+...+ \(\dfrac{1}{1458}\)
A \(\times\) 3 - A = \(\dfrac{3}{2}\) - \(\dfrac{1}{4374}\)
A \(\times\) ( 3 - 1) = \(\dfrac{6561}{4374}\) - \(\dfrac{1}{4374}\)
A \(\times\) 2 = \(\dfrac{6560}{4374}\)
A \(\times\) 2 = \(\dfrac{3280}{2187}\)
A = \(\dfrac{3280}{2187}\): 2
A = \(\dfrac{1640}{2187}\)