Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\)
\(\Leftrightarrow3\cdot C=3\cdot\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
\(\Leftrightarrow3\cdot C=\frac{3}{2}+\frac{3}{6}+\frac{3}{18}+\frac{3}{54}+...+\frac{3}{1458}+\frac{3}{4374}\)
\(\Leftrightarrow3\cdot C-C=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{486}+\frac{1}{1458}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
\(\Leftrightarrow2\cdot C=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-\frac{1}{18}-\frac{1}{54}-...-\frac{1}{4374}\)
\(\Leftrightarrow2\cdot C=\frac{3}{2}-\frac{1}{4374}\)
\(\Leftrightarrow2\cdot C=\frac{6561}{4374}-\frac{1}{4374}=\frac{3280}{2187}\)
\(\Leftrightarrow C=\frac{3280}{2187}:2=\frac{3280}{2187}\cdot\frac{1}{2}=\frac{1640}{2187}\)
Cái này ko làm theo quy tắc gì hết em nhé, chỉ là cách làm của dạng này thôi nha !!!!!
( nhớ ra nhiều bài để giải kiếm sp nha chứ dạo này ko lm đc j hết )
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)
\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)
ta có : \(4374=2.3^{x+1}\Leftrightarrow3^{x+1}=\dfrac{4374}{2}=2187=3^7\)
\(\Rightarrow x+1=7\Leftrightarrow x=7-1=6\) vậy \(x=6\)
Ta có :
\(4374=2.3^{x+1}\Leftrightarrow3^{x+1}=\dfrac{4374}{2}=2187=3^7\)
\(\Rightarrow x+1=7\Leftrightarrow x=7-1=6\)vậy\(x=6\)
Mọi người tick mình nha
Ta quy về dạng tổng quát xét cho dễ nhé.
\(\dfrac{1}{x\cdot\left(x+2\right)}=\dfrac{1}{2}.\dfrac{2}{x.\left(x+2\right)}=\dfrac{1}{2}.\left(\dfrac{1}{x}-\dfrac{1}{x-2}\right)\)
Từ đó áp dụng dạng tổng quát để rút gọn là ra.
Chúc em học tốt!
1.tính nhanh :(6/8+1).(6/18+1).(6/30+1)...(6/10700+1)
2.chứng minh rằng :A=1/2!+1/3!+1/4!+...+1/1000!
Bài 1.
\(A=\left(\frac{6}{8}+1\right)\left(\frac{6}{18}+1\right)\left(\frac{6}{30}+1\right)...\left(\frac{6}{10700}+1\right)\)
\(A=\frac{14}{8}\times\frac{24}{18}\times\frac{36}{30}\times...\times\frac{10706}{10700}\)
\(A=\frac{2\times7}{1\times8}\times\frac{3\times8}{2\times9}\times\frac{4\times9}{3\times10}\times...\times\frac{101\times106}{100\times107}\)
\(A=\frac{2\times7\times3\times8\times...\times101\times106}{1\times8\times2\times9\times...\times100\times107}\)
\(A=\frac{\left(2\times3\times4\times...\times101\right)\times\left(7\times8\times9\times...\times106\right)}{\left(1\times2\times3\times...\times100\right)\times\left(8\times9\times10\times...\times107\right)}\)
\(A=\frac{101\times7}{107}\)
\(A=\frac{707}{107}\)
Bài 2.
Thiếu đề bài
P/S : bài 1 làm chưa chắc đúng đâu nha.
\(H=1+2-3-4+5+6-7-8+.....(2018SH)\)
Ta có: Theo đề bài thì H có 2018 số hạng.
Ta nhóm 4 số hạng thành 1 cặp ,vậy có số cặp là:504,5 (cặp)
tổng của 1 cặp là: 1+2-3-4=-4;5+6-7-8=-4;......
Tổng của dãy là:-4.504,5-2018
Ta thấy:
\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4374}\\ =\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\right)\\ =\frac{1}{2}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
Mà:
\(\frac{1}{3}P=\frac{1}{2}\cdot\frac{1}{3}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^7}\right)\\ =\frac{1}{2}\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
Suy ra: \(P-\frac{1}{3}P=\frac{1}{2}\left[\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\right]\)
hay \(\frac{2}{3}P=\frac{1}{2}\left(\frac{1}{3^0}-\frac{1}{3^8}\right)=\frac{1}{2}\left(1-\frac{1}{6561}\right)=\frac{3280}{6561}\)
Vậy \(P=\frac{3280}{6561}:\frac{2}{3}=\frac{1640}{2187}\).
Chúc bạn học tốt nha.