M(x)=x^4+x^2+a:x^2-x+1 A.0. B.1. C.-1. D.2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x\(^2\) - x = x - 1
\(\Leftrightarrow\) x\(^2\) - 2x + 1 = 0
\(\Leftrightarrow\) (x - 1)\(^2\) = 0
\(\Leftrightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
a) \(x^2-x=x-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x=1\)
b) \(\left(x^2-36\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy..
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow-4x+2=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
d) \(x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=\pm1\end{matrix}\right.\)
Vậy..
Đề nghe cứ sao sao ý (mk góp ý thui đừng ném gạch đá nha)
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
Đặt \(t=x^2+6x\)
\(A=t\left(t+8\right)+8\)
\(A=t^2+8x+16-8\)
\(A=\left(t+4\right)^2-8\ge-8\left(\forall t\right)\)
\("="\Leftrightarrow t=-4\Leftrightarrow x^2+6x+4=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3-\sqrt{5}\\x=-3+\sqrt{5}\end{cases}}\)
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
a/ \(x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Rightarrow x=1\)
Vậy..............
b/ \(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Rightarrow x=-1\)
Vậy.......
c/ \(4\left(x-1\right)^2-\left(x-2\right)^2=3x^2\)
\(\Leftrightarrow4\left(x^2-2x+1\right)-\left(x^2-4x+4\right)=3x^2\)
\(\Leftrightarrow4x^2-8x+4-x^2+4x-4-3x^2=0\)
\(\Leftrightarrow-4x=0\Rightarrow x=0\)
Vậy...................
d/ \(x\left(x-2017\right)-x^2\left(2017-x\right)=0\)
\(\Leftrightarrow x^2-2017x-2017x^2+x^3=0\)
\(\Leftrightarrow x^3-2016x^2-2017x=0\)
\(\Leftrightarrow x^3+x^2-2017x^2-2017x=0\)
\(\Leftrightarrow x\left(x^2+x\right)-2017\left(x^2+x\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x-2017\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\x-2017=0\Rightarrow x=2017\end{matrix}\right.\)
Vậy pt có 3 nghiệm là.....(tự ghi ra)
\(a,x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(b,x^2+2x+1=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
\(c,4\left(x-1\right)^2-\left(x-2\right)^2=3x^2\)
\(\Leftrightarrow4\left(x^2-2x+1\right)-\left(x^2-4x+4\right)-3x^2=0\) \(\Leftrightarrow4x^2-8x+4-x^2+4x-4-3x^2=0\)
\(\Leftrightarrow-4x=0\Rightarrow x=0\)
\(d,x\left(x-2017\right)-x^2\left(2017-x\right)=0\)
\(\Leftrightarrow x^2-2017x-2017x^2+x^3=0\)
\(\Leftrightarrow x^3+x^2-2017x-2017=0\)
\(\Leftrightarrow x^2\left(x+1\right)-2017\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2017\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2-2107=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x^2=2017\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\\left[{}\begin{matrix}x=\sqrt{2017}\\x=-\sqrt{2017}\end{matrix}\right.\end{matrix}\right.\)
Chọn A