cho A= 1/7+1/13+1/25+1/49+1/97.Hãy so sánh tổng A vối 1/3
Ai trả lời nhanh mình tick cho. giải rõ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải giúp mình với
Cho A=1/7+1/13+1/25+1/49+1/97
Hãy so sánh tổng A với 1/3
giải rõ cách làm dùm mk nhé
Ý bn đề vậy à ??? \(A=\frac{1}{7}+\frac{1}{13}+\frac{1}{25}+\frac{1}{49}+\frac{1}{97}....1\)
\(A=\frac{14}{98}+\frac{7}{91}+\frac{4}{100}+\frac{2}{98}+\frac{1}{97}< \frac{14}{91}+\frac{7}{91}+\frac{4}{91}+\frac{2}{91}+\frac{1}{91}=\frac{28}{91}=\frac{84}{273}< \frac{1}{3}=\frac{91}{273}\)
Vậy A < \(\frac{1}{3}\)
Hơi khó hiểu một chút nha bn
~Chúc bạn học tốt~
Ta có \(\frac{1}{7}< \frac{1}{6};\frac{1}{13}< \frac{1}{12};\frac{1}{25}< \frac{1}{24};\frac{1}{49}< \frac{1}{48};\frac{1}{97}< \frac{1}{96}\)
=> \(\frac{1}{7}+\frac{1}{13}+...+\frac{1}{97}< \frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)(chỗ này quy đồng nha )
=>\(\frac{1}{7}+\frac{1}{13}+...+\frac{1}{97}< \frac{31}{96}< \frac{32}{96}=\frac{1}{3}\)
A = 14/98 + 7/91 + 4/100 + 2/98 + 1/97 < 14/91 + 7/91 + 4/91 + 2/91 + 1/91 = 28/91 = 84/273 < 1/3 = 91/273
Vậy A < 1/3
Bài giải:
`A =1/7+1/13+1/25+1/49+1/97`
`1/7<1/6,1/13<1/12,1/25<1/24,1/97<1/96`
`=>A<1/6+1/12+1/24+1/48+1/96=31/96<32/96=1/3`
`=>A<1/3`
Giải thích:
- Trong hai phân số có cùng tử số phân số nào có mẫu số lớn hơn thì nhỏ hơn.
- Sử dụng tính chất bắc cầu: `a<b, b<c` thì `a<c`
1/3 lớn hơn
giải ra nữa nhé bạn