Tìm x biết
a) |x|.x-3=x
b) 2x.|x+5|=x
bạn nào đang trên onlinemath thì giúp mình với, mình đang cần gấp lắm !!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |2x-3|+x=21
|2x-3|=21-x
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)
TH1: 2x-3=21-x
2x-x=21+3
x=24
TH2: 2x-3=-(21-x)
2x-3 = -21+x
2x-x=-21+3
x=-18
Vậy x \(\varepsilon\){-18;24}
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)
\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\) - 3) = \(x\)
\(\dfrac{1}{2}\) \(\times\) \(\dfrac{3x-2}{3}\) - \(\dfrac{2x-3}{3}\) = \(x\)
\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)
3\(x-2-4x\) + 6 = 6\(x\)
-\(x\) + 4 - 6\(x\) = 0
7\(x\) = 4
\(x\) = \(\dfrac{4}{7}\)
5/3 x X - X =2
5/3 x X - X x1=2
(5/3-1) x X =2
2/3 x X =2
X=2:2/3
X=3
Ta có:970 - 10x=1874
10x=970 - 1874= - 904=>x= - 904:10= - 90,4
ta có:
970-x+x+....+x=1874 (10 chữ số x)
(=)970+x+x+...+x=1874(8 chữ số x)
(=)970+8x=1874
(=)8x=904
(=) x=113
\(a,\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
vậy_____
\(a,\left|2x-5\right|=1\)
\(\Rightarrow\orbr{\begin{cases}2x-5=1\\2x-5=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
b, đề thiếu
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)
\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)
b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)
\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)