Tính giá trị biểuu thức 2^100 - 2^ 99 + 2^98 - 2^97 + ...+ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
cảm ơn bạn nhưng bạn sai rồi đáp án đúng là :100-99+98-97+...+4-3+2
=(100-99)+(98-97)+...+(4-3)+2
=1 + 1 +...+ 1 +2 (có 49 số 1)
=49+2=51
100 - 99 + 98 - 97 + ... + 4 - 3 + 2 ( có 99 số )
= 100 - 99 + 98 - 97 + ... + 4 - 3 + 2 ( có 49 cặp )
= 1 + 1 + ....... + 1 + 2 ( có 49 số 1 )
= 1 x 49 + 2
= 49 + 2
= 51
\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)
Đặt \(B=1+2+2^2+...+2^{98}+2^{99}\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow B=\left(2+2^2+2^3+..+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\)
\(\Rightarrow B=2^{100}-1\)
\(\Rightarrow2^{100}-2^{99}-2^{98}-....-2-1=2^{100}-\left(2^{100}-1\right)\)
\(=1\)
Số số hạng là :
\(\left(101-2\right):1+1=100\)
Tổng trên có giá trị là :
\(\dfrac{\left(101+2\right).100}{2}=5150\)
A= 2 + 3+4+...+96+97+98+99+100+101
Khoảng cách của dãy số trên là: 3-2 =1
Số số hạng của dãy số trên là: (101 - 2): 1 + 1 = 100 (số hạng)
Tổng A là: A = (101+2)\(\times\) 100 : 2 =5150
Đáp số: 5150
\(1-2+3-4+5-6+.......+97-98+99-100+101\)
\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)
\(=50.\left(-1\right)+101=51\)
D = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
A= 1+1+1+1+1..........+1
A có số số 1 là
(100-2):2 +1= 50
tổng đó là
(100+2).50:2=2550
gọi là A đi
=> 2A=\(2^2+2^3+...+2^{101}\)
=> \(2A-A=A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)=2^{101}-2=2\left(2^{100}-1\right)\)
ng thi bich hau co the giai chi tiet hon dc ko