K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2023

\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)

\(\Rightarrow n\left(\Omega\right)=6\)

Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)

\(A=\left\{3,4,5,6\right\}\)

\(\Rightarrow n\left(A\right)=4\)

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)

28 tháng 4 2023

Không gian mẫu: Ω= {1;2;3;4;5;6}   →n(Ω)=6

Gọi biến cố A:" Xuất hiện trên hai mặt chấm"

A ={3;4;5;6}    ➝n(A)= 4

Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)

 

Sửa đề: Xuất hiện mặt 2 chấm

n(A)=1

n(omega)=6

=>P(A)=1/6

27 tháng 9 2023

\(n_{\Omega}=6^3=216\)

a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"

\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"

Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}

=> \(n_{\overline{A}}=4.4.4=64\)

Vậy, XS của biến cố A là:

\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)

b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"

=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"

=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)

Vậy, XS của biến cố B là:

\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)

 

 

27 tháng 9 2023

Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega  \right) = 6.6 = 36\)

A = {(1; 1);           (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)

B = {(1; 2);           (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)

C = {(2; 6);           (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)

D = {(1; 6);           (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)

Do đó

\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)

Mặt khác

AC = \(\emptyset  \Rightarrow P\left( {AC} \right) = 0\)

BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)

CD = \(\emptyset  \Rightarrow P\left( {CD} \right) = 0\)

Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)

Vậy các cặp biến cố A và C; B và C, C và D không độc lập.

22 tháng 8 2023

tham khảo

A là biến cố "Có 1 số chấm chia hết cho 2, 1 số chấm chia hết cho 3, và không xuất hiện 6 chấm", \(P\left(A\right)=\dfrac{4}{36}=\dfrac{1}{9}\)

B là biến cố "Có ít nhất 1 trong 2 con xúc xắc xuất hiện chấm 6", \(P\left(B\right)=\dfrac{11}{36}\)

\(A\cup B\) là biến cố "Tích số chấm xuất hiện trên 2 con xúc xắc chia hết cho 6".

A và B xung khắc nên  \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{5}{12}\)

Δ=b^2-4*1*2=b^2-8

Để phương trình vô nghiệm thì b^2-8<0

=>-2 căn 2<b<2 căn 2

=>b=1 hoặc b=2

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).

b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).

c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).

a: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;5\right);\left(6;6\right)\right\}\)

b: A={(1;2); (2;1)}

=>P(A)=2/36=1/18

B={(4;1); (5;2); (6;3); (1;4); (2;5); (3;6)}

=>P(B)=6/36=1/6

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).

Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{36}} = \frac{2}{9}\).

NV
22 tháng 12 2022

Không gian mẫu: \(6.6=36\)

a.

Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)

Lần thứ 2 bất kì => có 6 khả năng

\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm

Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)

b.

Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

c.

Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp

Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)

Thầy có thể giải thích hơn về câu a và câu b của bài này được không ạ?