K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;5\right);\left(6;6\right)\right\}\)

b: A={(1;2); (2;1)}

=>P(A)=2/36=1/18

B={(4;1); (5;2); (6;3); (1;4); (2;5); (3;6)}

=>P(B)=6/36=1/6

22 tháng 8 2023

a) Tập hợp mô tả các biến cố:
`A: { (1, 4), (2, 3), (3, 2), (4, 1) }`
`B: { (1, 6), (2, 3), (3, 2), (6, 1) }`

b) Các kết quả khi cả hai biến cố A và B cùng xảy ra:
`{ (2, 3), (3, 2) }`

$HaNa$

6 tháng 5

gieo 2 con xúc xắc cân đối và đồng chất gọi k là biến cố 'số chấm trên 2 lần gieo có tổng bằng 8 'tính xắc xuất của biến cố k?

22 tháng 8 2023

THAM KHẢO:

Hai biến cố A và B không thể đồng thời cùng xảy ra.

6 tháng 11 2016

a) Không gian mẫu : Ω= { (i,j)∖ i.j = 1,2,3,4,5,6}
với i là số chấm xuất hiện trên mặt con súc sắc thứ nhất , j là số chấm xuất hiên trên mặt con súc sắc thứ 2.
→ /Ω/ = 36
b) từ gt ta có:
ΩA = { (1,1); (1,2); (1,3); (1,4); (1,5); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1); (4,2); (5,1); (1,6); (3,4); (4,3); (5.2); (2,5); (6,1)}
→/ΩA/ = 21
Do đó: P(A) = /ΩA/ phần /Ω/ = 21/36 = 7/12
c) từ gt có:
ΩB = { (1,6) ; (2,6);... (6,6) ; (6,1); (6,2);..; (6,5)}
ΩC = {như trên nhưng trừ (6,6)}
do đó: P(B) = 11/36
P(C) = 10/36 = 5/18

 

23 tháng 11 2016

a. Không gian mẫu là 6*6=36

b. A có các kết quả thuận lợi là (1,6) (6,1) (2,5) (5,2) (3,4) (4,3)

c. Biến cố đối của B sẽ là " Không có con xúc xắc nào xuất hiện mặt 6 chấm" Tức là con xúc xắc sẽ trở thành có 5 mặt => 5A2+5

=> P(B)= 1- P(Biến cố đối B)

d. (6,1) (6,2) (6,3) (6,4) (6,5) và ngược lại. Trừ (6,6)

=> có 10

=> P(C)= 10/36= 5/18

A={3;6}

B={4}

Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega  \right) = 6.6 = 36\)

A = {(1; 1);           (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)

B = {(1; 2);           (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)

C = {(2; 6);           (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)

D = {(1; 6);           (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)

Do đó

\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)

Mặt khác

AC = \(\emptyset  \Rightarrow P\left( {AC} \right) = 0\)

BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)

CD = \(\emptyset  \Rightarrow P\left( {CD} \right) = 0\)

Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)

Vậy các cặp biến cố A và C; B và C, C và D không độc lập.