K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

giải phương trình

x^3+5x^2-11=0

=>\(x\in\left\{-4,44;-1,88;1,32\right\}\)

28 tháng 4 2023

\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)

\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)

\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)

\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)

\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)

Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.

 

x^3-4x^2+5x-1-căn 2x-3=0

=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)

=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)

=>x-2=0

=>x=2

NV
13 tháng 12 2018

ĐKXĐ: \(x\ge\dfrac{2}{7}\)

\(\sqrt{5x^2-5x+3}-\left(x+1\right)+2x-\sqrt{7x-2}+4x^2-7x+2=0\)

\(\Leftrightarrow\dfrac{4x^2-7x+2}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{4x^2-7x+2}{2x+\sqrt{7x-2}}+4x^2-7x+2=0\)

\(\Leftrightarrow\left(4x^2-7x+2\right)\left(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1\right)=0\)

Ta có \(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1>0\)

\(\Rightarrow4x^2-7x+2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7-\sqrt{17}}{8}\\x=\dfrac{7+\sqrt{17}}{8}\end{matrix}\right.\)

\(\)

b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

 Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)

c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)

  Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)

 

5 tháng 2 2021

a)(x-1)(5x+3)=(3x-8)(x-1)

\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0

\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)

\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)

23 tháng 10 2015

\(pt\Leftrightarrow x^3+6x^2+12x+8=-4x^3\)

<=> \(\left(x+2\right)^3=-4x^3\)

<=> \(x+2=\sqrt[3]{-4}x\)

<=> \(x\left(1-\sqrt[3]{-4}\right)=-2\)

<=> \(x=\frac{2}{\sqrt[3]{-4}-1}\)

7 tháng 2 2019

x^4-4x^3+5x^2-2x-20

=x^4-4x^3+4x^2+x^2-2x-20

=x^2(x^2-4x+4)+x^2-2x-20

=x^2(x-2)^2 + x^2-2x+1-21

=x^2(x-2)^2+(x-1)^2-21=0

<=>x^2(x-2)^2+(x-1)^2=21

từ đây bạn giải ra cx này phải đề là tìm nghiệm nguyên nhé :D

7 tháng 2 2019

shitbo không biết làm thì thôi ...

\(x^4-4x^3+5x^2-2x-20=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2+x^2-2x-20=0\)

Đặt \(x^2-2x=a\left(a\ge-1\right)\)

\(\Rightarrow pt:a^2+a-20=0\)

\(\Leftrightarrow\left(a-4\right)\left(a+5\right)=0\)

\(\Leftrightarrow a=4\left(Do\text{ }a\ge-1\right)\)

\(\Leftrightarrow x^2-2x=4\)

\(\Leftrightarrow\left(x-1\right)^2=5\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}+1\\x=-\sqrt{5}+1\end{cases}}\)

14 tháng 5 2015

x2+5x-6=0

ta có : a+b+c=1+5+(-6)=0

=> x=1      : x2 =-6

Vậy phương trình có hai nghiệm x1=1 và x2 =-6

13 tháng 5 2015

x2 + 5x - 6 = 0

x2 + 6x - x - 6 = 0

x(x+6) - (x + 6 ) = 0

(x+6)(x-1) = 0

=> x +6 = 0 hay x -1 = 0

=> x = -6 hay x =1 

 

23 tháng 7 2017

a, \(x^4-5x^3+2x^2+10x+2=0\)

\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)

\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)

\(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)

Các câu còn lại tương tự!

Chúc bạn học tốt!!!

23 tháng 7 2017

tại sao lại > 0 nhỉ?