K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

\(D=\frac{2x+5}{x-4}=\frac{2\left(x-4\right)+13}{x-4}=2+\frac{13}{x-4}\)

D đạt GTNN <=> 13/x-4 đạt GTNN <=> x-4 Đạt GTLN

=>x-4=13

=>x=17

Khi x=17 D đạt GTNN

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

18 tháng 3 2021

x=1 nha bạn và C có giá trị bằng -5

16 tháng 3 2016

C nhỏ nhất <=> x-2 lớn nhất.

Nếu x-2 <0 => C<0.

Nếu x-2 >0 => C >0.

Mà C nhỏ nhất => C <0 => x-2<0 mà x-2 lớn nhất và là số nguyên

=> x-2 = -1

=> x = 1.

Vậy để C đạt giá trih nhỏ nhất thì x = 1 và khi đó C = -5.

28 tháng 10 2016

\(A=\left|2x+2,5\right|+\left|2x-3\right|\)\(=\left|2x+2,5\right|+\left|3-2x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=5,5\)

\(\Rightarrow A\ge5,5\)

Dấu = khi \(\left(2x+2,5\right)\left(2x-3\right)\ge0\)\(\Rightarrow-1,25\le x\le1,5\)

\(\Rightarrow\begin{cases}\left(2x+2,5\right)\left(2x-3\right)=0\\-1,25\le x\le1,5\end{cases}\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-1,25\\x=1,5\end{array}\right.\)

Vậy....

 

28 tháng 10 2016

GTNN = 5,5

khi x = -1; 0; 1

(đúng rồi, bạn giỏi quá)

a: Để A là số nguyên thì \(x+1-6⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b: Để B là số nguyên thì \(2x+8⋮x-2\)

\(\Leftrightarrow2x-4+12⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;6;-2;8;-4;14;-10\right\}\)

19 tháng 2 2022

a) \(A=\dfrac{x-5}{x+1}\)

\(=1-\dfrac{6}{x+1}\)

Để A nguyên

⇒ \(\left(x+1\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Còn lại em tự xét các trường hợp nha

b) tương tự câu a

28 tháng 3 2021

X=1 và C có zá chị = -5

21 tháng 2 2017

ta có: [2x+6] luôn luôn dương

  <=> [2x+6] +1 >= 1

  => giá trị nhở nhất = 1 tại x bằng -3 

Toán lớp 6 

19 tháng 7 2020

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

19 tháng 7 2020

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3