K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2023

Pt hoành độ giao điểm (P) và (d):

\(\dfrac{x^2}{2}=mx+\dfrac{1}{2}\Leftrightarrow x^2-2mx-1=0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_M+x_N=2m\\x_Mx_N=-1\end{matrix}\right.\)

Gọi I là trung điểm MN \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_M+x_N}{2}\\y_I=\dfrac{y_M+y_N}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2m}{2}=m\\y_I=\dfrac{m.x_M+\dfrac{1}{2}+m.x_N+\dfrac{1}{2}}{2}=\dfrac{m\left(x_M+x_N\right)+1}{2}=m^2+\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow y_I=x_I^2+\dfrac{1}{2}\)

Hay tập hợp I là parabol có pt: \(y=x^2+\dfrac{1}{2}\)

NV
20 tháng 4 2023

Do \(x_I=m\) mà \(y_I=m^2+\dfrac{1}{2}\) nên \(y_I=x_I^2+\dfrac{1}{2}\) thôi em

1 tháng 3 2022

???

1 tháng 3 2022

what?

a) Thay x=4 vào (P), ta được:

\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)

Thay x=4 và y=8 vào (d), ta được:

\(m\cdot4-m+2=8\)

\(\Leftrightarrow3m=6\)

hay m=2

Vậy: m=2

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)

\(=m^2-2\left(m-2\right)\)

\(=m^2-2m+4\)

\(=m^2-2m+1+3\)

\(=\left(m-1\right)^2+3>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2