Cho tam giác ABC (AB=AC), AB= 32 cm, BC= 24cm. Đường cao BK
a) Tính CK
b) Hạ AH ⊥ BC, AH cắt BK tại D. Tính DK
c) Lấy E ∈ AB, CE= 24cm. Tính AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{32+32+24}{2}=16+16+8=32+8=40\left(cm\right)\)
\(S=\sqrt{40\cdot\left(40-32\right)\left(40-32\right)\cdot\left(40-24\right)}=64\sqrt{10}\)
\(\dfrac{1}{2}\cdot BK\cdot AC=64\sqrt{10}\)
\(\Leftrightarrow BK\cdot32\cdot\dfrac{1}{2}=64\sqrt{10}\)
=>\(BK=4\sqrt{10}\left(cm\right)\)
b: \(AK=\sqrt{32^2-\left(4\sqrt{10}\right)^2}=12\sqrt{6}\left(cm\right)\)
BH=CH=12cm
=>\(AH=\sqrt{32^2-12^2}=4\sqrt{55}\left(cm\right)\)
Xét ΔAKD vuông tại K và ΔAHC vuông tại H có
góc KAD chung
=>ΔAKD đồng dạng với ΔAHC
=>KD/HC=AK/AH
=>\(\dfrac{KD}{12}=\dfrac{12\sqrt{6}}{4\sqrt{55}}\)
=>\(KD=\dfrac{36\sqrt{6}}{\sqrt{55}}\left(cm\right)\)
AB/AC=4/3
=>HB/HC=16/9
=>HB/16=HC/9=k
=>HB=16k; HC=9k
AH^2=HB*HC
=>144k^2=24^2=576
=>k=2
=>HB=32cm; HC=18cm
AB=căn 32*50=40cm
AC=căn 18*50=30cm
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
a: Xét ΔBAC vuông tại A có AH là đường cao
nên BA^2=BH*BC
b: BC=căn 18^2+24^2=30cm
CD là phân giác
=>DA/AC=DB/BC
=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2
=>DA=8cm
a: \(P=\dfrac{32+32+24}{2}=16+16+8=32+8=40\left(cm\right)\)
\(S=\sqrt{40\cdot\left(40-32\right)\left(40-32\right)\cdot\left(40-24\right)}=64\sqrt{10}\)
\(\dfrac{1}{2}\cdot BK\cdot AC=64\sqrt{10}\)
\(\Leftrightarrow BK\cdot32\cdot\dfrac{1}{2}=64\sqrt{10}\)
=>\(BK=4\sqrt{10}\left(cm\right)\)
b: \(AK=\sqrt{32^2-\left(4\sqrt{10}\right)^2}=12\sqrt{6}\left(cm\right)\)
BH=CH=12cm
=>\(AH=\sqrt{32^2-12^2}=4\sqrt{55}\left(cm\right)\)
Xét ΔAKD vuông tại K và ΔAHC vuông tại H có
góc KAD chung
=>ΔAKD đồng dạng với ΔAHC
=>KD/HC=AK/AH
=>\(\dfrac{KD}{12}=\dfrac{12\sqrt{6}}{4\sqrt{55}}\)
=>\(KD=\dfrac{36\sqrt{6}}{\sqrt{55}}\left(cm\right)\)