Tìm giá trị của x để A dương
Cho A= \(\frac{x-5}{x-8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) \(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)
\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)
\(A=\frac{\frac{-9}{2}}{\frac{7}{2}}\)
\(A=\frac{-9}{2}.\frac{2}{7}\)
\(A=\frac{-9}{7}\)
b) \(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow-\sqrt{x}-3=\sqrt{x}-5\)
\(\Leftrightarrow-\sqrt{x}-\sqrt{x}=-5+3\)
\(\Leftrightarrow-2\sqrt{x}=-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
vậy \(x=1\)
c) \(A=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
\(A=1-\frac{8}{\sqrt{x}+3}\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(8\right)\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
lập bảng tự làm
\(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)
\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)
\(A=\frac{-\frac{9}{2}}{\frac{7}{2}}=-\frac{9}{2}\cdot\frac{2}{7}=-\frac{9}{7}\)
Câu 1:
Để A>1 thì \(\dfrac{x+5}{x+8}-1>0\)
=>-3/x+8>0
=>x+8<0
hay x<-8
A > 0 <=> (x-5).(x - 8) > 0
TH1: x-5 > 0 và x - 8 > 0
=> x> 5 và x> 8 => x > 8
TH2: x-5 < 0 và x - 8 < 0
=> x < 5 và x < 8
=> x < 5
Vậy x <5 hoặc x> 8 thì A > 0
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow0<\)\(x-4\le4\)
thì \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)
A nguyên khi \(\frac{16}{x-4}\)nguyên hay \(x-4\inƯ\left(16\right)\)
Mà \(0<\)\(x-4\le4\)
Nên \(x-4\in\left\{2;4\right\}\Rightarrow x\in\left\{6;8\right\}\)
\(+\text{Xét }\sqrt{x-4}>2\Leftrightarrow x-4>4\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0<\sqrt{x-4}\)\(<2\)
Thì \(A=4+\frac{16}{x-4}>4+\frac{16}{4}=8\)
\(+\sqrt{x-4}\ge2\)
\(A=\frac{2x}{\sqrt{x-4}}=2t+\frac{8}{t}\text{ (}t=\sqrt{x-4}\ge2\text{)}\)
Mà \(t+\frac{4}{t}\ge2\sqrt{t.\frac{4}{t}}=4\)
\(\Rightarrow A\ge2.4=8\)
Dấu "=" xảy ra khi \(t=\frac{4}{t}\Leftrightarrow t=2\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x=8\)
Vậy GTNN của A là 8 khi x = 8.